
Blekinge Institute of Technology
Licentiate Dissertation Series No. 2011:05

School of Computing

Exploring Software Resilience

Björn Ståhl

Software has, for better or worse, become a core
component in the structured management and
manipulation of vast quantities of information,
and is therefore central to many crucial services
and infrastructures. However, hidden among the
various benefits that the inclusion of software
may bring is the potential of unwanted and un-
foreseen interactions, ranging from mere annoy-
ances all the way up to full-blown catastrophes.

Overcoming adversities of this nature is a chal-
lenge shared with other engineering ventures,
and there are many developed strategies that
work towards eliminating various kinds of distur-
bances, assuming that it is possible to apply such
strategies correctly. One approach in this regard,
is to accept some anomalous behaviors as mere
facts of life and make sure that the situations ex-
perienced are dealt with in an expeditious man-
ner, while at the same time trying to discover,
implement and improve safe-guards that can les-
sen adverse consequences in the event of future
problems; in short, to embed resilience.

The work described in this thesis explores the
foundations of software resilience, and thus co-
vers the main resilience-enabling mechanisms,
along with supporting tools, techniques and
methods used to embed resilience. These in-
struments are dissected and analyzed from the
perspective of stakeholders that have to operate
on pre-existing, critical, large and heterogeneous
subjects that are to some extent already up and
running at the point of instrumentation. Finally, in
the course of describing this subject, the thesis
describes a demonstrator environment for self-
healing activities in a partially damaged power
grid, its construction details and the initial results
of the study conducted in this environment.

ABSTRACT

ISSN 1650-2140

ISBN 978-91-7295-206-52011:05

E
x

p
lo

r
in

g
 S

o
f

t
w

a
r

e
 Res

il
ie

n
c

e
Björn Ståhl

2011:05

Exploring Software Resilience

Björn Ståhl

Blekinge Institute of Technology Licentiate Dissertation Series
No 2011:05

ISSN 1650-2140
ISBN 978-91-7295-206-5

Exploring Software Resilience

Björn Ståhl

Computer and Communication Systems Research Laboratory
School of Computing

Blekinge Institute of Technology
SWEDEN

Copyright c© April 2011, Björn Ståhl. All rights reserved.

Blekinge Institute of Technology
Licentiate Dissertation Series No. 2011:05
ISSN 1650-2140
ISBN 978-91-7295-206-5

Published 2011
Printed by Kaserntryckeriet AB
Karlskrona 2011
Sweden

Abstract

Software has, for better or worse, become a core component in the structured
management and manipulation of vast quantities of information, and is therefore
central to many crucial services and infrastructures. However, hidden among
the various benefits that the inclusion of software may bring is the potential of
unwanted and unforeseen interactions, ranging from mere annoyances all the
way up to full-blown catastrophes.

Overcoming adversities of this nature is a challenge shared with other engi-
neering ventures, and there are many developed strategies that work towards
eliminating various kinds of disturbances, assuming that it is possible to ap-
ply such strategies correctly. One approach in this regard, is to accept some
anomalous behaviours as mere facts of life and make sure that the situations
experienced are dealt with in an expeditious manner, while at the same time
trying to discover, implement and improve safe-guards that can lessen adverse
consequences in the event of future problems; in short, to embed resilience.

The work described in this thesis explores the foundations of software resilience,
and thus covers the main resilience-enabling mechanisms, along with supporting
tools, techniques and methods used to embed resilience. These instruments are
dissected and analyzed from the perspective of stakeholders that have to operate
on pre-existing, critical, large and heterogeneous subjects that are to some extent
already up and running at the point of instrumentation. Finally, in the course
of describing this subject, the thesis describes a demonstrator environment for
self-healing activities in a partially damaged power grid, its construction details
and the initial results of the study conducted in this environment.

v

Acknowledgements

This work has been partially financed by the EC grants:
FP6-038576, INTEGRAL
FP7-238868, SEESGEN-ICT

... To my Supervisor, Rune Gustavsson; my Assistant Supervisor, Per Mellstrand;
Jan Johansson and the people of the Pd MiB team at Sony-Ericsson; Raphael
Caı̈re, Nouredine Hadjsaid, Seddik Bacha and the people of IDEA/G2Elab in
Grenoble, France; colleagues and coworkers at Blekinge Institute of Technology;
family, friends and those that I regrettably lost on the way ... Thanks.

vii

viii

Contents

1 Introduction 1

2 Context 5
2.1 Information Systems and Information Processing Systems 6
2.2 Resilient Systems . 12
2.3 Software and Software-Intensive Systems 16
2.4 The Origin of Anomalies . 20

3 Structure 31
3.1 Approach . 31
3.2 Contributions . 35

4 Use and Misuse of Virtualization 39
4.1 Setting the Scene . 39
4.2 Approaching Virtualization . 41
4.3 Possibilities . 45
4.4 Caveats . 48
4.5 Moving Forward . 57

5 Retooling Software Debugging 67
5.1 Context . 67
5.2 Toolsuite . 69
5.3 SiS Transition . 73
5.4 Moving Forward . 76
5.5 Conclusions . 80
5.6 Errata . 81

6 Experimenting with Infrastructures 83
6.1 Background . 83
6.2 Experimenting with Power Grids 84
6.3 Experimenting with ICT . 87
6.4 Experimenting with Power Grids and ICT 91
6.5 Challenges . 93
6.6 Opportunities . 96
6.7 Conclusions . 97
6.8 Errata . 97

ix

x Contents

7 Conclusions 99
7.1 Summary . 99
7.2 Related Work . 103
7.3 Validation . 104

A Glossary 113

B References 117
Articles . 119
Books . 123
Standards . 125
Online Resources . 127

List of Figures

2.1 Abstract processor . 6
2.2 Systems of systems . 8
2.3 IPS Environment . 9
2.4 Illustration of direct access (top) compared to RAID-3 (bottom). . . . 13
2.5 The Von Neumann architecture of a stored-program machine. 14
2.6 A simplified SCADA Model . 19
2.7 Two-tier bug taxonomy . 23
2.8 An illustration of the deadlock condition. 26

4.1 Hypervisor model. 41
4.2 Von Neumann architecture and its virtualizable components. 42
4.3 Machine-space vs Virtual-space . 43
4.4 The virtualization ideal. 44
4.5 The virtualization problem. 49
4.6 Dynamic Loading. 50
4.7 Scripted dynamic loading (in Ruby). 51
4.8 Machine feature sets. 53
4.9 Possible actions. 58
4.10 Iterative process. 59
4.11 Non-native representations. 60
4.12 Virtualization hierarchies. 60
4.13 A small snippet from a text conversion routine. 63

5.1 Key actions for a trace probe. 77
5.2 Coordinating a network of trace probes. 78

6.1 NSF GENI Architecture. 84
6.2 A model of the microgrid. 85
6.3 ICT overview. 87
6.4 The virtualization problem. 89
6.5 EXP-I and its respective borders. 90
6.6 EXP-I services, monitoring added in EXP-II. 90
6.7 The basic lab setup. 91
6.8 The basic lab instantiated, one mode of operation. 92
6.9 Unified Operation Overview. 94

xi

xii List of Figures

7.1 The virtualization problem. 100
7.2 Overview of ICT components and their interconnections. 102
7.3 Monitoring snapshots. 107
7.4 Latency traces for several iterations of a self-healing sequence. 108
7.5 Protocols (Ambient, Modbus, RPC/DCOM, Other) in proportion to

the total traffic of each subnet. 108
7.6 Annotated self-healing graph. 110

1 Introduction

Bugs, flaws, defects, anomalies, mishaps, screw-ups, accidents, blunders, fail-
ures, blemishes, faults, slips, trips, crashes, glitches, shortcomings, imperfec-
tions, weaknesses, snafus, exploits, holes, failings, blisters, dents, cracks, marks,
scratches, snags, malfunctions, oopses, disasters, drats, buggers, mess-ups, train
wrecks, catastrophes and flukes.

The sheer number of words present in dictionaries and day-to-day conversations
used for describing situations where the outcome of some particular event
differs from expectations in some profound way is awe-inspiring. This extensive
selection of synonyms, furthermore, seems to at least hint that either things go
wrong more often than one would like or that we tend to be overly observant
whenever things do go wrong. The most frightening thing is that we sometimes
use these words to describe systems that, in spite of their failings, share an
important role as parts of the general task of governing our lives. The reason
why we accept this is probably because the benefits these systems bring seem to
outweigh most of the kinks and quirks that they introduce.

In recent times, many of our critical or sensitive systems have been extended
or enhanced with the inclusion of computing. Today, computing is not only an
integral part of the critical systems themselves, it also acts as a sort of logical or
structural glue between such systems, allowing them to interoperate in a more
automated manner.

These operation critical systems – be it water and sewage management facilities
or filing systems for medical records at hospitals – are riddled with challenges,
some of which may be eased with the introduction of more refined comput-
ing. However, at the same time, computing introduces non-trivial unforeseen
interactions into these systems.

Taking a step back to look at the larger picture, the ideal would, of course, be
to somehow create systems that are without any snags or dents. As far as the
software part goes, this might be achieved by having requirement engineers
encapsulate the goals of an intended software in the form of precise formal
specifications which could then be dispatched to the other developers: system
architects, designers, programmers, testers and others. They, in turn, would sit
down and with perfect rigor first develop the system, then deductively prove its
correctness, and finally deploy the solution to a presumably satisfied customer. In
other words: one solution seems to be to elevate the art of software development

1

2 Introduction

to a principled engineering discipline. Developing software ought to be no
different than constructing a bridge, a spacecraft or a new car.

Unfortunately, such comparisons are at the very best poor and misguided. Soft-
ware – in the sense of the combination of code and data that through the execution
by a computer enable computation – is not even remotely similar to a bridge, a
chemical, a car or a quilt. In fact, the very characteristics that make software so
versatile, also constitute the reason why software is difficult to capture and con-
trol using traditional mathematical models and methods. These characteristics
spring from, in part, the fact that interactions are heavily dependent on feed-
back loops which introduce non-linearities, such as reconfigurations (dynamic
polymorphism), when they are finally executed. Other contributing factors are
the strong interconnectedness between the software, the machine that makes
the software tick and their respective environments. In this way, software is
controlled to a great extent by the actual limitations of the machine in terms
of computational capacity, storage space and communicational bandwidth. In
addition to this, system components are often executed in environments that did
not, and to a certain extent could not be, known at the time they were designed
and developed.

An alternative to the ideal of flawless software just described, is to, with a systemic
perspective in mind, embed resilience. This means that systems are designed and
developed with the notion that no component is ever to be assumed flawless
and that any component present will decay with time. Obviously, a software
component cannot be said to decay in a literal sense of the word, but as its envi-
ronment changes the function of the component may be affected in strange and
unwanted ways, invalidating previously strong assumptions with consequences
that are hard or even impossible to predict. Things will eventually go awry, but
if we accept this, we may be able to manage it to a certain degree. In short, to
embed resilience we can:

• Decouple components, especially critical ones, in order to isolate problem-
atic parts and limit cascading1 effects.

• Implement self-healing mechanisms, in order to recover from component
failure.

• Recurrently strengthen the system through hardening fueled by contin-
uously validating behavior – since self-healing and monitoring provide
feedback on component stability and data on errors as well as on the
respective impact of faults.

• Monitor component conditions and states in order to refine hardening and
provide feedback for future development efforts.

1Cascading is when the occurrence of a fault somewhere in a system propagates.

Introduction 3

These concise principles, primarily derived from [37] do not necessarily have to
apply directly to software. Self-healing, for instance, is complicated to define
and cover when just considering the context of software. To find a more relevant
subject of study, it is more useful to work with several other systemic distinctions,
the overarching one being that of software-intensive systems. These are systems
where software is a necessary but not sufficient component. In such systems, the
following attributes are especially emphasized;

• Heterogeneity – The components involved are of different origin in terms
of both age, role and underlying technology, e.g. processors with dif-
ferent instruction sets, different fundamental architectures (von neumann
versus harvard or modified-harvard for instance), or more technically, highly
specialized Digital Signal Processors (DSPs) mixed with generic Central
Processing Units (CPUs).

• Concurrency – Several dependent and independent computing tasks occur
within roughly the same time-frame (within the borders of a system), all
sharing or competing for the same limited resources.

• Distributed – The code, data, inputs and outputs of the different parts of
the system are scattered across several devices, interlinked through some
kind of communication bus or network.

To provide a more focused context, we direct our attention towards two major,
critical and software-intensive classes of systems:

• System Control and Data Acquisition (SCADA) for power-grid management. In
addition to their sensitive and critical nature, these systems are typically
rich in legacy with components and technology stretching across a large
time-span, having been modified and expanded upon to reflect and ac-
count for changes in the governed grid. By design, they are considerably
brittle and, due in part to legacy reasons, vulnerable to an extremely large
assortment of software and network security associated attack scenarios.
Furthermore, it is likely that any specific SCADA solution is specialized to
such a degree that its configuration and on-line presence must be treated
as unique (single-instance, single-configuration). Thus, in contrast to more
conventional software, it poses additional restrictions on the instrumen-
tation and intervention that can be performed on the system once opera-
tional.

• Mobile phones represent a dramatic blurring of the conventional borders
between embedded systems and more generic computers. They are typi-
cally comprised of literally hundreds of third-party hardware components
and software libraries. Above all, they have a rather unique relationship
with another legacy rich international infrastructure: the phone-network –
with a large assortment of protocols and regulations that are challenging

4 Introduction

both economically, politically and technically. Furthermore, through the
transition to ’smart phones’, mobile phones have gone from comparatively
simple one-purpose embedded systems to multi-purpose devices that rival
the size and complexity of modern desktop computers. Consequently,
mobile phones are beginning to face similar obstacles when it comes to
software security, piracy, development and maintenance.

Even though these two categories serve as the focal point and area of application
for the research presented, the overall results and discussions are sufficiently
generic to be applicable in many other computing endeavors. Briefly put, this
thesis is about discovering the means and boundaries of resilience mechanisms
with respect to software as part of software-intensive systems. The general focus
of the thesis is thus how such mechanisms interact and can be taken advantage
of to improve – or simply understand more about – the inner workings of these
systems.

The structure of this thesis is as follows:

In chapter 2, context, a basic perspective is established on the terminology, ideas,
history and problems that in part motivate the research but also serve as a context
from which to consider the included articles. The chapter thus also acts as a
primer intended for those with moderate insight into the specifics of computing
and its associated technology.

In chapter 3, structure, the academic structure is detailed with respect to the
research questions, the scientific approach and how these relate to subsequent
chapters.

Chapters 4, 5 and 6 comprise the core of the contributions made. These concern
(a) virtualization as a resilience mechanism and shows how it behaves in a
wide range of applications, (b) the properties of the tools that can be used
to explore and study such behavior and (c) how one can go about setting up
experiment environments and experiments for studying the interaction between
infrastructures.

Lastly, chapter 7 summarizes the work and validation of results and presents
related work and future research possibilities along with lessons learned.

For sake of reference, the definitions to commonly used terms and abbreviations
can be found in the glossary appendix section.

These chapters are written so they can be understood independently of each
other, and may therefore – to the meticulous reader at least – appear as having
slight redundancies or overlaps. However, if the contents of a certain chapter or
section still appear confusing, undefined or even incomprehensible, return to
chapter 2. If that does not help, blame the author.

2 Context

The goal of this chapter, in contrast to the others, is not to describe work that has
been done as much as it is to try and provide the context and background from
which the other chapters can be readily understood. The reason for this is that
the ideas and approaches presented stem from a wide assortment of disciplines
and areas and may thus need clarification.

Structurally speaking, the chapter is divided into two segments. The first one
includes Sec. 2.1 and Sec. 2.3 and tries to answer the question what is it that we
are trying to make more resilient? The second segment, beginning with Sec. 2.4,
answers the question which specific problems should we be more resilient against?.

There are a few overarching points or arguments that are emphasized throughout
the chapter:

• Software is not merely automated calculation.

• It is only through execution that software can present a behaviour.

• The descriptions used to articulate an envisioned software’s intended
behaviour do not necessarily depict the software’s actual behaviour when
executed.

• There is a large assortment of tools and dynamic processes involved when
transforming a series of description into executing software. These tools
and their respective configurations heavily influence the actual behaviour.

• The complexity of these tools may well supersede that of the system they
are part of constructing.

In addition, the perspective in this chapter is mainly that of working from the
point of existing, developed software rather than with the specific challenges of
developing software, even though there usually is some overlap. The original
software developers may be unavailable for different reasons. Thus, our ap-
proach towards exploring the mechanics behind software resilience relies heavily
on our ability to experiment with a subject and understand its behaviours and
transformations at a very low level even if this subject has not been explicitly pre-
pared for this in advance. Some of the challenges involved are thus similar to the
challenges related to debugging a mature target or to that of reverse-engineering.

5

6 Context

2.1 Information Systems and Information Processing Systems

It is often claimed that software has, amongst other things, behaviour. Such
claims have already been made several times in this chapter alone. Definition
wise, behaviour concerns the response an organism gives to a certain stimulation,
but it is a far stretch to think of software as a living organism, even though
there are some entertaining similarities. Therefore, we broaden behaviour to
include describing patterns on observable and measurable reactions, output, as a
consequence to some stimulation, input. With software, we can usually find some
logical block, be it a function or an entire program, and tinker with its respective
input and configuration and then measure its output, or lack thereof, in search
of regularities, patterns. The only time when this can be done is during execution.
Thus, only software in its running state can be considered as having a behaviour.

2.1.1 Information Processing Systems

If we treat software as simply a mix of instructions that regulate how ones
and zeroes should be moved around, we will have a hard time trying to find
properties such as meaning, purpose, intent or quality. To illustrate this, one
may take a debugger and attach it to a randomly selected process on one’s
computer, pause the execution of said process, and then disassemble the coming
few instructions. There is little doubt that these instructions describe what is
about to happen inside the system in a very precise manner, but to try and
extrapolate meaning from the instructions alone is a pretty futile endeavor;
software without context is just an Information Processing System (IPS).

Processor
Input(s) Output(s)

IN
TER

FAC
E

Configuration

Figure 2.1: The abstract processor in an information processing system, where
we only concern ourselves with the information streams (inputs, the interface,
the processing and the outputs), not the specifics of the processor itself.

An IPS can take information coded in one form, perform some operations to
change it around a bit, and spit it out in a different shape. This is accomplished
with the help of a processor (Fig. 2.1). The role of the processor does not depend
on a computer to do the job. At times, we do use humans to fill the role as pro-
cessors. While the digital processor is able to process many orders of magnitude

2.1. Information Systems and Information Processing Systems 7

more information than say, a human counterpart would, they are still both per-
fectly able to process information. A key difference other than the obvious ones
however, is the required precision of the instructions that describe the intended
processing. A human for instance, is perfectly able to accept instructions that are
fairly abstract, while the digital counterpart requires instructions that are exact.
The benefits of one in regards to the other can be argued quite extensively, but
having either one as part of your solution does in no way exclude the other from
participating.
A short example to illustrate the presence of humans as integral but insufficient
parts of an IPS, would be that of an emergency service. Through a communication
channel, a connection is established between dispatch (operator) and the person
in distress (user). The operator tries to extract a set of relevant parameters
to determine the gravity of the situation, decide what the correct response is
(formulate a request) and then forward this request (dispatch) to some other
part of the system such as an ambulance service, a police authority, firefighters
or similar, depending on the nature of the dispatched request. The information
used as a basis for this decision is weighted from several dynamic sources: the
user, the pool of available resources, positional data from the communication
channel and so on. The process is time-critical in the sense that the response time
between an incident and the deployment of the most suitable remedial actions is
key, but the elimination of the automated processing would cripple performance
and the elimination of the human counterpart would render the service moot.
Now, it may seem strange to compare humans and computers in this way, but
there are a few interesting points shared between the two in regards to the role
as an information processor. One is how the information that is processed actu-
ally alters the future behaviour of the processor. A mechanism that illustrates
this is a cache, operating on the principle that information which is frequently
accessed should be kept close by. This can be achieved in many ways: hash
tables, machine-learning algorithms, metaprogramming reflection, dynamic re-
compilation, and many more. These techniques optimize the processing towards
increasingly refined responses to information flows that are either identical or
at least similar to the ones that have previously been handled, thus specializ-
ing the running program further towards information patterns that may well
be specific to one particular setting, but which are also bound to the life-span
of said instance unless accounted for. If the program is terminated, then it is
quite likely that such dynamic fine-tuning will be lost. Specialization of this
nature exemplifies what we elsewhere refer to as the online value of a system and
is therefore substantially different from other attributes such as its availability.
The merits of a system’s online value can also be thought of as information
lost when rebooting or forcibly restarting a computer in the hope of reverting a
malfunctioning system to a more stable state.
Optimization achieves two larger goals. The first one is to shorten the time that
elapses from the input of a request to the output of a response. The second goal
is that extraneous information, if any, can be omitted. A conceptually similar
thing happens with the human processor when we gather experience. By doing

8 Context

something repeatedly you tend to get increasingly quicker and more precise as
the number of iterations increase. The same basic benefits and problems persist
however: processing gets tuned to a specific context, e.g. a work-place, and
can be adversely affected if the subtle underpinnings of that context change or
disappear, something which is likely to happen at least partly, when switching
jobs or assignments.

The relationship between specialization and its opposite, generalization, in an
IPS is particularly relevant when you have a system that is deployed in several,
quite possibly hundreds of thousands of instances. Some system optimizations
that are considered harmful in the long run, may need to be singled out and
removed, while the good ones should be generalized to apply not only to the
single instance but to all instances. Balancing specialization (optimization) and
generalization is, by definition, problematic and one of the central challenges to
engineering programs.

For instance, something that is often held as a virtue or strength of programs
written using more abstract programming ”languages”, is that they can be
detached from both the information that they process, and from the machine that
enables the processing. It may well be a great thing that a program can run on
several operating systems and in turn on several different kinds of processors and
hardware architectures, achieving a far greater number of independently running
instances, but that is still only made possible through yet another program which
translates these more generic instructions into the specific ones that each single
machine can act upon. To then be able to make good use of feedback like
performance data, praise or anomaly reports, one instead needs to first filter
irrelevant local traits from specific machines and then reinterpret this, hoping
that the relevant bits were not lost in translation.

Figure 2.2: Systems of Systems, interconnected through interfaces. Viewed as a
white-box (left) and as a black-box (right).

The next point of interest is how these systems can be expanded upon. That the
output of one program can be the input of another is not particularly foreign; it

2.1. Information Systems and Information Processing Systems 9

is a core part of the imperative programming paradigm – but the central part is
how these inputs and outputs are modeled and specified, the interface.
Provided that the interfaces of procedures, functions, methods, objects or pro-
grams make sense, i.e. provided they are defined in a way that one can hook
into another, like pieces of a puzzle (Fig. 2.2), and have conforming information
that should be propagated across these interfaces, a larger abstract picture can
be painted: one of systems of systems. Ideally, any programmer capable of
grasping an interface ought to be able to add to this growing machinery with
ease. This is where black-box and white-box reasoning fits in; a programmer
does not necessarily have to know the inner workings of the system(s) as such,
he or she just needs to see to it that the interfaces match and that any rules on
the sequence of information flows (protocol) are followed. During debugging or
reverse-engineering, however, such a black-box approach may not suffice due
to internal characteristics, such as the non-linear properties of the box. These
properties include characteristics such as state sensitivity, feedback loops, recur-
sions and concurrency. If you give a program the same inputs, but the outputs
that you observe are different each time you run it, how can you expect to figure
out its behaviour, let alone establish if the observed behaviour deviates from the
intended or expected behaviour, or understand the chain of events that caused
the observed behaviour?

Processor Processor

Environment

Program Program

Linker Loader

Filesystem

RAM Harddrive CPU

Schedulers Drivers

RTS Libraries

Figure 2.3: The enabling layer of an IPS, its environment.

As it stands, the processor does not work on its own. There is a direct need
for support from its immediate environment. As this model does not focus on
technical detail, a lot of small subsystems are aggregated into the environment
concept. Look at Fig. 2.3 for a quick illustration of some of the things that can be
involved. Even with such a limited model, many of the properties that greatly
contribute to making software problematic, can be explored.
This brings us to the final point of interest, which concerns the kinds of problems
that may occur. The previous discussion on optimizations showed that optimiza-
tion processes risk specializing execution too far; should any of the assumptions
that a particular specialization relies on be invalidated from changes to the execu-
tion environment, the system may suffer performance degradation. Similarly, the
discussion on interdependencies illustrated that systems can grow incrementally
interconnected in subtle and unintended ways. With such interdependencies,
it is implied that the problems which affect one smaller part of the system can

10 Context

propagate, cascade, in essence making the entire system a brittle one. If you hit it
hard enough at any point, the cracks travel far away from the point of impact.

Some information processing activities are definitely sensitive to timing in re-
gards to both when processing begins and how long it takes. Reactive scenarios
are particularly sensitive, like the emergency service example where the differ-
ence between the desired outcome and a catastrophic one relies on a proper
response. A common problem here is the malfunctioning of a subsystem, be it a
supporting technology like a hard drive or even in the computations because of
program flaws. Such malfunctions typically force the subsystem into a terminal
state from where execution halts, likely affecting the programs next in line.

From the processing part of information processing, it is easy to infer that this
part implies some sort of change being imposed on some information stream;
what the contained information represents or where it is currently being stored.
Processing may only involve moving information from one location in storage
to another, i.e. from one system to another, but could equally well involve
quite extensive transformations, e.g. combining several pieces of information
into a new one based on a delicate set of conditions. Chances are that the
transformations deviate slightly from what was intended: a small negative
number turned into a very large positive one, a real number loosing a few digits
of precision or a string of characters losing a few letters or perhaps shifted around
a bit; whatever the reason, the effect is that information is corrupted. If such
corruption is not discovered and dealt with in time, it too will propagate.

2.1.2 Information Systems

Thus far, we have briefly covered the purpose of IPSs, but the close associates of
these systems, the blood stream of the computing world, the information system,
is still to be discussed. As previously stated, merely processing information
according to a dynamic and adaptive set of rules and regulations is a fascinating
subject for study. However, there is usually some larger task or challenge 1 that
the processing is part of resolving. These tasks can be virtually anything from
helping people to travel or communicate long-distance, to diagnosing a sick
patient. In this thesis, such tasks will be referred to as services.

Many services can benefit greatly from automation, and technical innovations
tend to have a large impact on what we spend our time doing. Leaving menial
labor to machines allows us to do other, hopefully more interesting things. Many
innovations on automation have in the past been of a mechanical nature: the
spinning jenny, steam engines, and so on. What computers have done is to finally
open up more abstract automation to a large number of people. While truly a
great thing, this added layer to services depends on a very delicate machinery
that we know to be flawed in many ways. We also know that correcting these

1Something more than studying software simply for the pure joy of exploring the possibilities and
structures of the abstract microcosm of computation.

2.1. Information Systems and Information Processing Systems 11

flaws can be both difficult and time-consuming. Parts of this difficulty stems
from how the various layers grow together to form a very complicated and dense
blob. The distinct separation discussed here, between information processing
systems and information systems is rare to find in society, and for good reasons.
The following example illustrates this on a technical level:
A programmer writing a program for a very primitive machine finds himself
in the need to store two bytes somewhere in memory. Picking an address at
random is a hassle both for the programmer and for the machine, especially since
there are a lot of subtle rules that regulate what can and what cannot be done
at different locations in memory. For the sake of convenience, a small region of
computer memory is reserved to be used as short-term storage, which we call
the stack. A CPU register is reserved to keep track of where the base of the stack
is located and instructions are included that add and remove items on the stack
accordingly. The programmer can now focus less on getting memory access
exactly right, and is thus free to more easily make sure that his actions will not
interfere with other parts of the program. Even if the program is flawed and
ends up writing or reading from the wrong offset, the region to focus on is now
quite small, neatly packed without a lot of random noise and with predictable
access patterns to boot. The stack is an abstraction so primal that it is taken
for granted. But using the stack, the programmer now needs to keep track of
the position of his value in relation to the base, instead of the exact address in
memory. However, even that becomes confusing after a while. To resolve this
problem, the programming language can be improved to track symbolic references.
This can be accomplished by the inclusion of a translation phase where symbolic
references or ’names’ are replaced by lower level counterparts. From these rather
small changes, the task of instructing the machine how to store these two bytes
has changed:

1. STORE 0x22, 0x1020 - storing directly.

2. PUSH 0x22 - storing indirectly, relative to the current stack position.

3. pumpValveStatusFlag = 0x22 - storing indirectly, using a symbolic refer-
ence.

Now, with the third option, two major things have happened. One is that the
instruction is more abstract – the addressing done could in fact be either as
in 1 or as in 2 but what actually happens will depend on the tool that performs the
translation. The other thing that happened is that small fragments of the meaning
or intent behind the service and its respective information system have been
encoded into the schematics of the processing.
This example hints at something which really represents a large shift in what
both programming languages and programming are all about. We are actively
piling layers upon layers of abstractions, and expanding the set of tools needed
to translate these abstractions into the basic building blocks that actually do
something. These layers enable the coupling of the processing to the information

12 Context

system. The above example only covers the trivial use of a variable, but a good
exercise is to try and think about what must necessarily be done to make current
’cutting edge’ programming languages work in terms of object encapsulation,
inheritance, polymorphism, generics, reflection and so on.

From an analysis standpoint, it would be simple to say that what all this boils
down to is that we can reason backwards from an observation of something
undesired and trace it back to whatever flawed statement that caused the be-
haviour in the first place. With that out of the way, the only thing left is to figure
out what might be wrong with the statement and finally change it into some-
thing less flawed. This may well be the case for extremely trivial problems. The
more complicated ones, however, can rarely be explained away by something
trivial, such as the use of an uninitialized variable. This leaves us at a point
where we are forced to consider the chain in its entirety: from the service, to the
information system, to the processing, to the processor. At times this mean that
you need to be able to understand something fairly technical, e.g. CPU cache
coherency. At other times it means figuring out what the client really needs and,
perhaps more often, what some programmer actually meant with something like
pumpValveStatusFlag.

2.2 Resilient Systems

Looking at one of the major weaknesses pointed out with IPSs, their supposed
brittleness, it is easy to see how the two stances on development strategies that
was brought up in the introductory chapter fit in. If it was possible to create a
system that fits neatly into an extremely well-defined role with rigorous methods
and deductive proofs, then there would be no brittleness to speak of. If this does
not seem reasonable to achieve, and possible consequences of certain flaws are
somewhere between unacceptable and disastrous, we are forced to try and lessen
those consequences by patching wherever the seams fail. To combat the shifting
quality of the various components that, when put together, make a modern
program tick, developers turned to resilience.

The human body is a nice example of a very resilient system. This resilience
is demonstrated by its ability to cope with some of the many problems that
arguably stem from a combination of its schematics – the genetic code – and
contact with the pathogens and contaminants that are always present in its
surroundings. These problems can be presented in a conceptually similar way to
what goes on in an IPS, i.e. systemic effects may be brought on as a consequence
of a damaged component or from unforeseen interactions between components.
However, the body is in many cases able to repair and rewire itself and therefore
cope with a large assortment of injuries that would otherwise be fatal, i.e. self-
healing. While computer systems may not yet be able to repair themselves to
the extent that humans can, there are a number of interesting technical examples
which illustrate some degree of resilience:

2.2. Resilient Systems 13

RAID – Hard disk drives have long been the source of much headache. Not
only are they quite central to the operation of most personal computers, they
often contain both sensitive and valuable information. They are quite easily
replaced, but when they fail their content is usually partially damaged or even
unrecoverable. As they consist of many mechanical parts that are put under
heavy strain, and at the same time sensitive to both shock and temperature,
their lifespan is quite short. Several strategies have been developed to deal
with the consequences of data-loss due to a failing hard-drive such as regular
snapshots (backup) and redundancy. One particularly interesting idea in this
regard is Redundant Array of Inexpensive Disks (RAID) [1]. This system comes
in several flavors, but the typical pattern is that two or more physical disk drives
are combined into one logical volume and by distributing data across these drives
in intelligent ways, various benefits are achieved.

Read/Write Request Storage

Storage

Storage

Parity

TranslationRead/Write Request

Virtual Volume

Figure 2.4: Illustration of direct access (top) compared to RAID-3 (bottom).

Some of the variants of RAID use a parity component which means that a certain
proportion of storage space is reserved for storing parity information (error-
correction codes), providing the benefit that some or all information, that would
otherwise be lost due to a damaged drive in the array, can be recreated.

1. Storage capacity – Because some space is used for storing the parity data,
the amount of available storage space is considerably less than the total
capacity of the drives in the array.

2. Performance – For every write to the virtual volume, the parity must be
calculated. To do that the data must be routed through a processor, either
on a shared CPU or on a dedicated one. This alters the load on different
buses and possibly makes some optimizations such as Direct Memory
Access (DMA) transfers less efficient or useless altogether.

3. Virtualization – The operating system must ensure that no device driver
and no part of the Application Programming Interface (API) allow the
virtualization to be circumvented by raw device access.

14 Context

4. Coordination – To implement the solution, several other tasks may need
to be coordinated and taken into account. This includes the scheduling of
read/write operations and individual drive states, such as head position
and rotation speed.

The overhead, including the maintenance of additional software/hardware that
performs the actual translation, can be considerable and this is not atypical of
resilience mechanisms. While the benefits of RAID may not always warrant
the overhead, there is another technology whose merits are seldom disputed:
process separation.

Memory

Control Unit
Arithmetic
Logic Unit
Accumulator

INPUT OUTPUT

Figure 2.5: The Von Neumann architecture of a stored-program machine.

Processes Separation - An extremely potent resilience mechanism is process
separation, a kind of virtualization now present in most operating system kernels.
Its distinct benefits are most easily illustrated by lookin at what happens when it
is absent.
Start by winding the clock back a few years and assume that we have a very
limited Von Neumann machine, Fig. 2.5. This means that program code is stored
in read/write random-access memory from which a processor with flow-control
and arithmetic support fetches instructions based on the value of a designated
register, interacting with its immediate environment through inputs and outputs.
Note that there is no direct separation between code and data. Locations in
memory can contain data which can represent either one, or even be both at the
same time.
Consider the situation where we need to run many separate bounded compu-
tations (programs) at essentially the same time, while limited to using a single
machine. This is the very basic idea behind multitasking.
There are two fundamentally different ways of implementing multitasking:
cooperative and preemptive.
Cooperative or non-preemptive means that you write programs in such a way
that they cooperate by turning the control of the execution flow over (called
yielding) to each other whenever feasible. Typically, this is implemented using
an agreed upon memory region structured as a queue, array, or list of pointers to
the current instructions of all participating programs. Yielding execution thus

2.2. Resilient Systems 15

means adding your next instruction to the structure and jumping to the address
of the next logical entry in the structure as often as necessary or feasible (safe).

When using preemptive multitasking, the programmer (or the tools if such a
feature is part of the run-time support required by the programming language
used) does not, in principle, have to make any special considerations as a smaller
program, the scheduler, is given access to an external trigger that will forcibly halt
execution of the current program and transfer it to the scheduler. A common
such trigger is an interrupt handler connected to a hardware timer.

Whichever way it is implemented, multitasking has both strong benefits and
suffers from considerable problems. One such problem is that the set of programs
active needs to both be stored in and have access to memory. With multiple
programs sharing the same memory space, careful consideration needs to be
taken to avoid a situation where the memory addresses used for storing data and
instructions for one program do not overlap or collide with others. Provided that
the memory space is sufficiently large to fulfill the needs of both programs, this
would be possible to calculate during construction, had it not been for indirect
memory operations.2 The big issue concerns what happens to the rest of the
system when a part of the program or hardware misbehaves. A very common
class of bugs concerns a write to an unintended location in memory which may
then alter the data or instructions belonging to another program. This may
change the outcome and behaviour of that program, in ways that are extremely
hard to predict. Such a change is likely to cascade, ultimately rendering the
entire system unstable and eventually broken. Reverting the system to a working
state then requires a restart, a very time-consuming operation and critical data
belonging to otherwise working programs may be lost.

Process separation can lessen this effect quite dramatically. By modifying the
scheduler to only keep one program and its respective data in active memory,
temporarily moving everything that belongs to other programs to a safe place,
the ability of one program to malfunction and cascade into another is signifi-
cantly reduced. At the same time, the illusion of several programs running in
parallel is maintained. One way to implement this is simply to use the input /
output capabilities of the machine and appoint a hard drive or similar device for
swapping program memory contents back and forth. However, this interacts
poorly with the communication bus used for connecting the processor with
the swap device and thus becomes a last resort unsuitable for highly frequent
task switches. A more clever way to deal with this is to virtualize memory by
adding an intermediate translation step to each and every memory access. This
translation maps a path between a virtual address and a physical one using a
reprogrammable lookup-table. This allows for a number of interesting possi-
bilities, like extending the amount of accessible memory beyond the size of the
address bus3.

2Indirectly, this means that the actual address is the result of a previously computation, using data
from other memory locations or CPU registers.

3For a taste on how this used to be done, read up on a technique called bank switching. Although

16 Context

This actually covers a lot of the microcosmos within operating systems. If
the individual tasks here are refined extensively, something like the modern
operating system ought to eventually emerge. At the same time, this discussion
also illustrates a few important things, like the tendency to reshape one problem
(here, cascading data corruption) into another one (performance degradation) while at
the same time increasing overall complexity, by employing an absolutely central
concept, virtualization. Paradoxically, the solution to the degraded performance
is then to embed (or hide) the implementation in the machine, thus increasing
the complexity of the hardware involved.

In closing, the resilience mechanisms illustrated are quite potent but also in-
herently dangerous. In many cases they are simply not necessary (the system
continues to behave as expected). If they are activated and actually perform
their set task, the underlying trigger needs to be examined and dealt with, i.e.
debugged. Hence, resilience mechanisms need to be actively evaluated and
monitored.

2.3 Software and Software-Intensive Systems

Punch cards as a way of storing information predates modern computers by a
long period. They were initially used for storing instructions that controlled
mechanical automation such as machines used for weaving fabric or self-playing
pianos. With the advent of early computers, punch cards were both an accepted
and useful form of storing instructions as the alternatives were expensive and
cumbersome. Discarding punch cards as the means for storing instructions and
data, we can assert that the focus of early software was the automation of calcu-
lation of things such as the numerical approximation of non-linear differential
equations and other tasks of a similar nature. With punch-card software, we figura-
tively mean the idea of software created for a limited and well-definable purpose
with few or no dynamic properties. Such software was not likely to change or be
adversely affected by smaller changes in its immediate environment. This marks
the border between what used to count as computers and what is now generally
meant by the term.

The next step follows a very predictable path: the technologies behind comput-
ers developed rapidly and advanced exponentially in terms of capacity, ability
and availability. Closely trailing the tracks of such advances were comparable
changes in the programming languages used to generate the code that coordi-
nated and controlled the different technologies. What the programmer focused
on switched from the implementation of a single algorithm to stitching several
algorithms together using a sort of data-structural glue. This mindset was con-
veniently called structured programming and object oriented programming can be
considered an advanced form of this type of programming. Along the same lines,

somewhat outdated, the underlying principles are still relevant, with very interesting and far reaching
consequences.

2.3. Software and Software-Intensive Systems 17

computing got applied to new key areas of application where the management of
information was the new priority. Secondary storage of programs switched from
punch cards to Read Only Memory (ROM) chips, hard-drives and other forms of
persistent storage. Programs went from being one-shot calculations to tools for
managing, analyzing and manipulating large quantities of information.4

With almost each and every advancement, new layers of abstraction were in-
troduced and piled on top of previous ones in order to try and manage the
new demands. Communication networks brought on all sorts of major changes,
particularly large-scale collaboration between computers. To speed things along
we can skip a few steps and simply state that software has slowly changed from
basically sorting strings and factoring prime numbers into something highly dy-
namic, capable of operating both distributed and locally while at the same time
reshaping and tuning itself to current operating conditions and usage pattern.
In stark contrast to the mid twentieth-century market for computers, which has
notably been estimated to suggest a total demand of approximately five to fifty
computers world-wide, we have since long passed the point where computers,
more potent than previously imaginable, outnumber us by far.
Most of these computers perform fairly simple tasks and consist of digital probes
for temperature and humidity, alarm clocks, etc. However, if we take a walk,
actual or imaginary, through a store in a supermarket chain and look for the
information systems which they govern, we will notice them everywhere. They
are found in the Radio Frequency Identifier (RFID) or in the barcode enabled
hand scanner that you run over each and every item before you add them
to your shopping basket. The little key that the scanner reads connects data
stored in a local database that acts as a cache for the chain-wide super servers
which keep tabs on people, accounts, prices and possible discounts, continuously
updated using data from stock markets and news agencies. These databases
are linked together over the corporate virtual private network, layered on top
of the internet. This goes on for quite a while, but the core matter is that a
stunning amount of day to day activities is heavily regulated and managed by
computers, interconnected and working in ways that are hard to cognitively
grasp. It is neither accurate nor particularly fair to reduce it all to being hardware
that performs calculations based on a static set of rules. The main keywords here
are thus open, heterogeneous and dynamic:

• Open because the borders are undefined. They really depend on where
you draw the line based on your roles and stakes in the system. It is
tremendously difficult to measure and find strong interfaces where you
can comfortably say that this is the point where your particular system,
responsibilities and problems begin or end.

• Heterogeneous because few components are ever likely to be similar and
interchangeable. Lots of processors, varying from newer 64-bit Reduced In-

4For a slightly more academic touch on the subject, please refer to the great principles of computing,
http://greatprinciples.org

http://greatprinciples.org

18 Context

struction Set Computer (RISC)/Complex Instruction Set Computer (CISC)
hybrids with reprogrammable instruction sets sporting features such as
hierarchical privilege separation, to hardwired 8-bit ancient technology
still hidden away inside cash registers and similar devices, may happily
cooperate over a shared communication bus until the day one of them
starts acting weird following some corporate enforced policy on date and
price representation change.

• Dynamic as the total set of active components and their respective con-
nections change quite frequently, often on several levels at the same time.
Policy changes, political reform and technological advances all the way
down to adaptive optimizations and normal wear and tear, all contribute
to the dynamic behaviour of the system.

With this in mind, the previously stated idea of software as merely automated
calculation is clearly inadequate. Communication, information, interaction and
other advanced properties are considerably more relevant. Systems overlap and
share components on several levels, with the more obvious ones being things
like dynamic libraries, communication stacks and file-systems in multitasking
operating systems. All components are susceptible to some sort of life-cycle; they
age, get patched, retuned or replaced on a somewhat regular basis. Different
components tend to age at different rates, however, and even though some seem
to interact fine at first or even most of the time, subtle incompatibilities can
suddenly be introduced.
A primitive example of this is colloquially called the dependency hell problems
that can be found at overlapping boundaries between subsystem such as shared
libraries. Say that we have two programs, prog1 and prog2, that rely heavily on a
shared library, shlib. There is some kind of problem inside one of the functions
exported in shlib that both prog1 and prog2 suffer from. The developers behind
prog1 is on a tight schedule and can neither wait for a new version of shlib to fix
the issue, nor can they afford to develop their own replacement function. The
compromise lies in writing a quick fix in prog1 that works around the specifics of
the bug in shlib. Meanwhile, the developers of prog2 have responsibly contacted
the vendor behind shlib with a report on the issue. Confident that the problems
will be remedied shortly, the developers continue working on other parts of
prog2. We can now fast forward a few weeks, months or years. Both programs
are now out there in the wild, running on a variety of computers. Both prog1 and
prog2 come bundled with the version of shlib that was used in development, both
seemingly operating without problem. However, a subset of users installed prog1
as soon as they got their hands on it, and then installed prog2 later on. When
doing so, the installer software complained that it found an older version of shlib
and asked if it should be replaced with a newer, supposedly better, version of the
same library. The local administrator agrees5 and suddenly reports start pouring
in that the business critical prog1 has started to malfunction.

5or at least clicks OK, hoping that the annoying dialog box will disappear.

2.3. Software and Software-Intensive Systems 19

The issue is seldom as clear-cut and as in this example. Usually, the scale is
considerably different, concerning not one or two libraries in conflict, but a
large dependency graph of hundreds of libraries. Similarly, it is not one or two
programs sharing a single resource but tens to hundreds of programs sharing
many different kinds of resources. Obviously, the problem is not directly related
to technology as such – even though technology can be used to mitigate the
effects – but it is located somewhere in the intersection between management,
politics and technology. It is for reasons such as these that the debacle around
the Y2K6 caused so much wide-spread panic. We have only had these kinds of
systems for a very brief period of time and there are still unpleasant surprises
waiting to spring7.

2.3.1 SiS Example: SCADA

As an example of a software-intensive system rich in legacy, consider an instance
of a SCADA, which is basically a telemetry and telecommand successor for the
management of production facilities, power grids, flight control, surveillance
systems, etc. A pioneering application for the first half of the 20th century was
support to weather forecasting where computational tasks were performed by
humans and results and measurements were conveyed through the use of tele-
graphs and radio. This was refined and optimized with technology from other
industries such as railway management that had similar problems with gath-
ering measurements. Humans were eventually replaced by sensors and relays
communicating by radio. In the early 1960s digital computers had advanced
enough to be integrated.

Modems, Radio,
Wide Area

networks, ...
MTU

HMI

RTU

RTU

RTU

Monitored / Controlled
devices

Monitored / Controlled
devices

Monitored / Controlled
devices

Figure 2.6: A simplified SCADA Model

6A date representation problem in that many systems were representing years with only two digits
of precision, something that worked fine in the span for the years between 1900 and 1999, but might
prove problematic later on.

7An interesting collection of major such stories can be found at http://www5.in.tum.de/~huckle/
bugse.html

http://www5.in.tum.de/~huckle/bugse.html
http://www5.in.tum.de/~huckle/bugse.html

20 Context

At this point the SCADA model (Fig. 2.6) emerged, with Remote Terminal
Units (RTUs) gathering measurements and enforcing commands. Each RTU
communicates with a Main Terminal Unit (MTU) that aggregates and records
data but also interacts with a Human Machine Interface (HMI).

The HMI is used by one or several operators that manage whatever resources
the system controls. Although technology has shifted considerably since then,
the basic idea and layout remain the same, and the biggest change in technology
related to SCADA has happened in surrounding systems; corporate Information
Technology (IT) became, for better or worse, ubiquitous. Digitalization became
the new word of the day, and everything from customer records to incident
reports and technical schematics were stored in databases and made accessible
through the local Intranet at a response time of mere milliseconds. To improve
operator decision making, information from other parts of the corporation should
be accessible to the operators working at the HMI. Eventually, the comparably
frail SCADA system was bridged with other networks.

Now, well-established SCADA systems in long-serving infrastructures have, as
just mentioned, a considerable legacy. Samples from most parts of computing
history can literally be found still running at some well-forgotten remote termi-
nals. The next step would be exposing subsets of the information gathered to the
customer base as to reduce loads on customer support and similar benefits, like
a power grid operator with a website showing current network health.

Now, think of the complexities dormant here: old computers well beyond re-
tirement are coupled with their cutting-edge counterparts, both with software
of their own written in languages both prominent and expired, communicating
using a mix of poorly documented proprietary binary protocols and standard-
ized open ones. In addition, these are sharing networks with other systems
within the corporation: accounting, storage systems, the odd virus and so on
with pathways at times leading as far as to the Internet.

2.4 The Origin of Anomalies

Our approach to resilience is twofold. One is to improve the actual composition
of the system, by any means possible. The other is to have an organizational
structure that is capable of taking care of issues that arise in an expeditious
but careful manner. Probably both the composition and the efficiency of the
surrounding organization will need to improve the end service. The concern
shared by both approaches is the range of problems that can occur, and the
common causes that precede them – to look at the origin of software anomalies8.

8The term ’anomaly’ is purposely used here instead of the more common and anthropomorphistic
’bug’. This is not to sound academic and pompous, but rather to emphasize the deviation from
intended or expected behaviour and from actual or observed behaviour instead of some predestined
and predetermined problem. In other words, this term allows ample room for interpretation. If, on
the other hand, the behaviour has already been established as malign from the perspective of the

2.4. The Origin of Anomalies 21

The principal claim on the supposed origin of software anomalies that is often
discussed in software-engineering literature [38] is that each and every anomaly
is simply an inconsideration on behalf of the developer, but this may just be one
of the cases where things are being made a bit too simple due to convenience
rather than brevity; in the world of a developer there are literally hundreds
of protocols, conventions and interfaces within the machine, language and
execution environment that, to a variety of degrees, need to be followed just
to be able to create, by current standards, pretty trivial software. Some of
these interfaces and protocols are poorly defined, lacking either representative
documentation or being outright ambiguous, sometimes by design. Factor
in other related concerns such as security, developing tests, proofs alongside
wiggle room for future alterations into the mix and we are looking at a pretty
complicated mess. In addition, there’s a blossoming category of tools that
purposefully exploit ambiguities and convention to obscure and obfuscate the
actual workings of a particular piece of software [39].

In order to be able to cope with this complexity, tools for automation have
steadily increased. Few today are capable of manually creating machine code, or
linking together compiled code into an executable binary or even supplying the
compiler with the optimal set of parameters. In spite of such tools, the situation
in regard to complexity has not reduced the challenge that developers face. On
the contrary, the major change is that focus has shifted from technical detail to
other parts of the process and other levels of abstraction. Consequences from an
inconsideration, however, are at least as grave as before; they are amplified by
an increasing divide between description (code), transformation (toolchain) and
execution (machine/environment).

An early example of the dangers of overextended trust in the tools we use to
construct software can be found in [2] wherein Thompson describes how he
exploited the learning facilities of a C compiler capable of compiling itself to
have it output different (with a backdoor) code when and if the Uniplexed
Information and Computing System (UNIX) login program was compiled. The
toolchain of today is far more convoluted; we have compilers, linkers, virtual
machines, code signing, code encryption, code obfuscators, CPU microcode,
virtualization extensions, copy protection, runtime packers and unpackers, etc.;
the list goes on for quite a while. Which ones of these can be trusted to not
introduce subtle and hard-to-detect problems?

A second claim on the origin of anomalies concerns the way we make assumptions
about the inner workings of some particular system and how we thereafter proceed to
make alterations for our own benefit by either changing the original source code
or by exploiting some interoperability/modularity features (such as dynamically
loadable libraries). While any such alterations may work fine on their own when
the subsystem in which they operate is considered, we may have inadvertently
changed the situation for some other party that we indirectly share or compete

stakeholder in focus, the term bug will be used.

22 Context

with for some resource. If such a change is not taken into account by other
systems, we, through feedback loops, inadvertently worsen our own situation.

Not only are these situations prone to anomalies but the potential problems
that may arise from such situations are complicated with behaviour that may
depend on environmental factors in the enabling machinery sometimes differing
radically between each instantiated system. This happens both on a small scale
with third-party libraries or, as is the case with many modern development envi-
ronments, the built-in API where we assume and rely on tools and feedback from
execution (like iteratively alternating between code completion/code insight for
API parameters and a test run to see if the immediate behaviour was as intended).
This also occurs at a large scale from the integration of components and services
when implementing, for instance, corporate wide information systems.

The third claim is the changing environment, which relates to the fact that surround-
ing systems we depend on for our own systems to function properly change
in some way not accepted or accounted for. This happens at an escalating rate
due to the high availability of communication channels between a system and
its creators/maintainers through automated software updates over the Internet.
The properties and components of a large software system may suddenly change
radically in just a short period of time without much further notice, and while
many development efforts strive to maintain compatibility to as large an extent
as possible, this often becomes a task even more complicated than developing
the software in the first place.

These three claims are fairly similar. We assume things and fail to consider some-
thing complicated; the surrounding changes, and all of a sudden our software
stops performing as intended or expected. Unfortunately, none of these anomaly
origins seem especially preventable; they merely relate to the many unavoidable
challenges in the manual translation between an informal description and a
formal one – the actual task of programming.

2.4.1 Effects

To further the above discussion as to why various issues occur, we will proceed
by categorizing the effects that are possible to measure, observe, during execution
and which are independent of the programming language that was used during
development. Thus, there is no speculation as to the link between an observed
effect and some corresponding description or development process. Therefore,
other commonly used or ’standard’ classification schemes, such as [50] are not
used here. Not all problems caused by software malfunction are the same when
examined closely, and the various differences are reflected by the terminology
used colloquially by developers and analysts; terms such as ’race condition’, ’buffer
overflow’, ’memory leak’, ’deadlock’, ’stack overflow’ and a wide variety of other, more
colorful names are often used to distinguish between different kinds of problems
experienced. Some are very close to the underlying cause, others the effect and
the rest is a mix of both.

2.4. The Origin of Anomalies 23

EFFECTS

LABEL

Data corruption Terminal state Inadequate Performance

race condition
<dead,live>

 lock
<buffer,heap,stack>

 overflow

<dangling, wild>
pointer <protocol, type>

mismatch

Figure 2.7: Two-tiered minimalistic taxonomy of observable effects and corre-
sponding labels.

2.4.2 Tier 1 – Effects

The effects in this tier are not independent, as Fig. 2.7 illustrates. Often, there
is a rapid succession of these effects that, cascade into each other at roughly the
same time frame. This phenomenon causes the occurrence of one problem (distal
cause) to further break other parts (proximal causes) that might previously have
been behaving correctly and that were perhaps even verified as functioning
according to specification. However, thanks to the huge amount of instructions
processed in a fragment of a second by modern computers and the comparably
slow response time of a human observer, the problem that was detected is likely
to be the proximal one rather than the initial.

Data Corruption

Data corruption means that instead of what was supposed to be written to a par-
ticular place in memory, to some secondary storage or conveyed to some distant
device over a network connection, something else, likely garbled, is written. It
might also be the case that the data itself are correct but are instead saved to an
erroneous location/address, and if that location is in use by something else, it
becomes an additional occurrence of data corruption. The way this manifests
depends on what the data is used for and if the data exceeds some other virtual
unenforced boundary and flows into adjacent memory used for other purposes.
This may vary considerably depending on where the corruption takes place;
a rule of thumb is that the closer to the processing device data get corrupted,
the sooner immediate effects can be observed. For example, primary memory
and especially memory used as stack is considerably more sensitive than both
secondary storage or remote connections, due to the amount and frequency of
writes taking place and the scope of safe guards in place.

24 Context

Terminal State

In contrast to the more generic use of state for describing ’the way things are at
a certain moment in time’, a terminal state is reached when the execution of a
program has, for any reason, come to a complete stop. This does not necessarily
have to be a bad thing, but it depends, of course, on the context and the timing
of the event that initiated the termination. A program terminating as part of its
programming, or a program being terminated because there is nothing left to
do, may not be a big deal. However, a program suddenly terminating during
a critical transaction is a completely different affair. There are quite a few parts
involved in the operation of a computer that can induce a terminal state, acting
as safeguards against other failures or more nefarious activities. Safeguards are
often found in the shape of exception and trap handlers or in the form of memory
access protection such as guard pages, read-only memory addresses, and many
more.

Inadequate Performance

Performance is a tricky property for many reasons, and there are several central
terms thats need to be considered. Starting with the unit of measurement, we
first need to find out if we are interested in performance in relation to the
amount of processing cycles that some piece of code requires, or if the problem
is related to an external clock measuring how many milliseconds that have
elapsed? Then comes the precision needed. Should the measurements be exact,
or can they be fine-grained or perhaps even coarse-grained? Each of these terms
carry additional problems. One is that the demarcation between adequate and
inadequate performance is often blurred. The notable exception is the case when
a terminal state has not been reached and progression has halted (look at the tier2
labels live and deadlock). To exemplify this, one can look at time constrained
settings where there are strict deadlines for various activities, which is the case in
a variety of critical areas such as medical appliances and vehicle control systems.

A more interesting, follow-up example are graphic engines. Among their various
challenges lies the fact that there is a certain real-time component based on
the properties of the display device and of the user. The refresh rate of the
display sets an upper threshold of how many image frames that can be drawn,
and the perception of the user sets the lower threshold (somewhere around
12-25fps). At the same time, graphic engines are operating on a best effort
basis, meaning that in a sense, there is always a need for more resources, and
the main task is using the available ones as efficiently as possible. Given the
heterogeneity of underlying hardware configurations, along with concurrent
tasks utilizing resources differently in unpredictable ways, good engines are
constantly adapting to the current situation, switching algorithms and structures
based on the current choke-point [40]. Thus, there are certain contexts, of which
real-time graphics engines are a good example, where sufficient or adequate

2.4. The Origin of Anomalies 25

performance in respect to the quality of service provided is a very dynamic
target.

2.4.3 Tier 2 – Label

Based on the observable events from the first tier, we now connect these to
common labels used to reference a certain event in relation to a known structural
flaw or malign chain of events. For each label, there are a few properties well
worth considering, such as:

• Observer effect sensitivity – describes how the mere act of observing (gath-
ering measurements) influences the behaviour of the measured system.

• Repeatability – called reproducibility by some – describes how difficult it is
to exactly mimic the circumstances which triggered the effect in the first
place.

• Severity –referring to possible and likely consequences.

Race Condition

Race conditions cover all kinds of situations where we have two or more concur-
rent tasks with some dependency on a shared resource. The problem appears
when one task alters the shared resource in a way not accounted for by the others.
Since timing in regard to the shared resource is a large contributor to when and
how the effect is triggered and what consequences will follow, race conditions
are sensitive to everything that may affect such timing. This can make them hard
to catch in the act as both occurrence and impact are difficult to determine.

Deadlock and Livelock

If we would catalog all labels further, both deadlock and livelock would fall on
the same page as race conditions, and they have similar properties when it comes
to repeatability. Deadlocks are, however, particularly picky in regard to which
concurrency-prerequisites that have to be fulfilled for them to occur9 [3], Fig. 2.8,
whereas livelock also requires repeated testing (without any other computation
being performed) for something which is supposed to happen but never does,
like checking the shared resource for some change or value that is supposed to
be set by the other task but never is. In terms of detection, deadlocks are a lot
easier to discover than other kinds of concurrency problems, since the effect is
immediate (several processes stop proceeding) and the impact is typically critical,
with algorithmic approaches for automatic detection available. Livelocks have a
similar impact but are a bit trickier to detect because execution continues; the
instructions performed simply do not lead to progress in computation.

9Mutual Exclusion, Hold and Wait, No Preemption and Circular Dependency

26 Context

P1

R1

P2 P3

R2 R3

Figure 2.8: An illustration of the deadlock condition.

Buffer, Heap and Stack Overflow

All these kinds of overflow problems describe some boundary being unenforced
in the implementation of a data structure or type which, instead of returning
an error, leads to an overwrite of some other data that happen to be stored in a
location nearby. This fits the definition of data corruption effects pretty well.

When a buffer overflow occurs, the data structure, which is some sort of array
(memory region), is being indexed or addressed outside of its allocated space.
Heap and stack overflows, on the other hand, describe not the structure being
targeted but rather where the corruption takes place. Buffer overflows are
reasonably easy to find and deal with when both the targeted structure and the
supposed boundary are known. Unfortunately, buffer overflows occur quite
frequently in software partly developed in languages that expose a lot of detail.
If the subsequent data corruption hits user data or system state variables rather
than crash-prone areas, chances are they will lead to more complicated problems.

Dangling, Wild Pointer

Dangling or wild- pointers are references to memory locations or objects that
for some reason are no longer valid in the sense that they either reference the
wrong (although this may be hard to determine) object or address. These situa-
tions arise when pointers are allowed to be arithmetically changed when using
them without proper initialization or when state-variables containing address
information are not updated after referenced resources have been (de)allocated
or moved.

Protocol / Type Mismatch

As mentioned in the beginning of Sect. 2.4, there are a multitude of protocols
that developers are supposed to follow in a variety of degrees. These protocols
depend on an interface through which data are passed in accordance with a set

2.4. The Origin of Anomalies 27

of rules. These rules dictate the formatting and sequence of such exchange (a
protocol).

Information in virtually all current machines is represented in binary at the
lower levels, a representation that there are several ways of interpreting with
some being compatible with others. This allows for the establishment of type, a
very common construct in programming languages at all levels. Interfaces and,
by association, protocols are typically written with this distinction of type, in
mind. Some languages allow for the direct and implicit (automatic) conversion
between types, and languages with extensive support for the Object Oriented
Programming paradigm are exceptionally rich in type-abstractions and even
type-hierarchies.

When a protocol is implemented in a language that allows for conversion be-
tween types or several types to pass through an interface, chances are that the
implementation may accept types that have not been considered for that particu-
lar use, risking potential consequences such as undesired state transitions and
data corruption.

Resource Leak

A large portion of current programming concerns resource management. Pro-
grams allocate resources from some shared pool facilitated by some kind of
managerial subsystem, most commonly the operating system kernel. Resources
can be anything from primary memory (Random Access Memory (RAM)) to
more abstract ones such as handles for threads, interprocess communication and
Transmission Control Protocol (TCP) ports amongst several others.

Typically, a program requests an allocation regarding a desired resource some
time in advance of its intended usage. When a previously allocated resource is
no longer needed, most resource management schemes require that the program
performs a deallocation as a hand-off to indicate that said resource can freely be
allocated by other processes.

It follows then that if a program fails to indicate that a resource is no longer
needed, the allocation might last for either the lifespan of the process or (depend-
ing on resource management technique) worse – the lifespan of the system itself.
While this may seem like a minor detail, there are a few factors in play that may
escalate further consequences considerably:

• Allocation rate – how often leaky resource allocation requests are invoked.

• Allocation size – how large leaky resource allocation requests are invoked
in respect to the total amount of that resource available.

• Process lifespan – various system services and server programs tend to
live longer (in some cases, indefinitely) than regular tasks. The lifespan of
a process is interesting when termination would lead to deallocation of all

28 Context

associated resources as a termination or forced termination might then free
up resources for other tasks to use.

All these factors affect the time it takes to reach a state of resource starvation, the
point where the pool of allocatable resources is drained, meaning that any new
allocation requests fail. For many programs, the result of a failed allocation is
detrimental, forcing execution to take often untested and unconsidered paths
with cascading effects covering the entire span of possible outcomes.

Remarks

There are cases that do not fall neatly into these categories. A double free, for
instance, is a special case with C-malloc style memory allocator functions where
deallocation is performed twice on the same address and manifests itself in three
different ways: as a crash, as data corruption of program specific data or as data
corruption of program control structure data.

• In order to manage the allocation and deallocation of memory, some control
structures are needed in order to keep track of allocations that have been
made. If a block of heap memory is deallocated twice without any other
actions taken in between deallocation requests, the second deallocation
will have an argument that points to an address not referenced by these
structures. This situation may be detected by the memory manager and
will yield a crash or an abort.

• If, however, an allocation is made between the first and the second deallo-
cation call, chances are that the deallocation will affect memory currently
in use by some other part of the program and which will subsequently be
used as a result to other allocation requests. This leads to a non-intuitive
corner case of race conditions where the shared resource is unintentional,
which in turn is very likely to result in data corruption.

• Finally, some memory managers make little or no effort to try to secure the
data in their own control structures. The second deallocation request may
then, instead of a crash or exception, lead to overwrites of data in such
control structures, e.g. next and previous pointers in double-linked lists.

One large contributor to situations like double-free is called aliasing. Aliasing
occurs frequently when dealing with pointers but also exists in systems that use
a more restrictive form of pointers, references. Aliasing means that an allocated
block of memory is referenced by several variables at the same time, either at
the base or at an offset. This has an effect on performance in that it restricts the
amount of optimizations that a compiler can perform safely and it is particularly
dangerous when aliasing occurs between functions because the programmer
would then have to take into account how all functions manage memory.

2.4. The Origin of Anomalies 29

Albeit a subject much too involved to bring up here, it is worth mentioning that
all these labels also have a software security dimension to them. To name a few:

• Deadlocks and Livelocks are sought after as targets for denial-of-service
types of attacks, with the primary goal being to overload a victim device to
the point where it cannot process legitimate requests, or as the intermediate
goal when trying to expose other attackable surfaces.

• Memory mismanagement in the sense of heap or stack buffer overflows has
for long been the primary source of software security commotion. Despite
many clever methods of protection, exploitation techniques have for the
most part been able to keep up. Advanced examples currently include
Return- Oriented Programming (ROP) and heap-spraying.

• While it is impossible to establish control over every dangling or wild
pointer (in fact, the address of the pointer is not necessarily controllable)
there are certain corner cases where they can be exploited. For instance,
when the address can be controlled or determined, even if just partially,
and it can then be used as an array with user-supplied offset.

• Protocol and type- mismatch scenarios are broader and are thus likely to
branch out in any of the above. However, they also suffer from application-
specific attacks of their own, particularly in domains with complicated or
dynamic type models and ambiguous protocols. Examples of this are most
things web-related, cases such as cross-site scripting, cross-site request
forgery, Structured Query Language (SQL) injections and many more.

The main reason why software security is relevant to the discussion in this thesis
is not simply the fact that it can be used to illustrate how severe the consequences
can be from seemingly harmless mistakes, but more importantly that the area
is highly developed when it comes to taking advantage of the dynamic playing
field, and that there are valuable lessons to be learned from such efforts. There is
also some additional overlap that extends towards conflict in the sense that the
mechanisms that can be used to measure, monitor and experiment with a subject
also open up for more nefarious activities that are the distinct target of certain
security efforts.

3 Structure

The layout of this chapter is as follows:

In the first section, Approach, the fundamental issues that we work towards re-
solving are presented in the context of a mission statement. This mission statement
also covers academic and industrial efforts that, to some degree, act as influence
or bias to the direction and underlying assumptions of the material presented.
From this position, a series of research questions are addressed.

The second and final section, Contributions, introduces the papers included in
relation to the research questions presented, their methodological aspects and
the publication forms. This section also describes how these papers interrelate
and which kinds of alterations that have been made in order for them to better
fit this thesis.

3.1 Approach

It is worthwhile to note that the work presented herein is in no way conclusive
nor are its questions to be considered fully answered. That is not to say that this
body of work is not a relevant and structurally sound step on the way. The initial
goal is thus to establish explorative models, methods, tools and experimental
environments that may serve future endeavors.

3.1.1 Mission Statement

Briefly put, the overall goal of the work behind this thesis is to enable the transition
of brittle software-intensive infrastructures into resilient software-intensive infrastruc-
tures. To clarify, the premise is that critical infrastructures, with a focus on the
power-grid, are deemed critical due to their role in the upkeep of current living
standards. There would be a substantial and significant loss suffered should
such infrastructures fail. Whatever role an infrastructure fulfills, it has reached
that position through gradual adaptation alongside other societal functions. As
such, even though the initial designs might take scale and future development
properly into account, the development on dependence of other infrastructures
is unavoidable.

31

32 Structure

In the case of the power-grid, the benefits gained from telemetry and telecom-
mand solutions – the predecessors to what eventually became SCADA class
systems – outweighed the seemingly more distant disadvantages of being cou-
pled to information and communication technology (ICT). As things currently
stand, however, the dependence is circular, i.e. to maintain and operate the
power-grid, a lot of Information and Communication Technologies (ICT) is
needed. This ICT requires a reliable power supply.

Moving from bad to worse, developments during the last 15-20 years in regards
to software security, have poked irreversible holes in the presumed security and
barrier protections of these systems. There are numerous, previously improbable
or implausible threats directed towards SCADA class systems and sophisticated,
directed attacks have recently been revealed [59, 60]. In addition to this, indirect
threats have been partially responsible for large incidents, such as the case with
the BLASTER worm’s contribution to the much discussed northeastern blackout
of 2003 in the USA [61].

The situation appears similar in other infrastructures that have become depen-
dent on ICT, such as health care and transportation. Even though it may still
be debatable whether the Internet is critical enough to be considered a critical
infrastructure, the trend suggests that it will only be a short while before any
such debate is laid to rest when the borders between smart phones, laptops and
computers is further blurred as these technologies grow interconnected with cur-
rent and coming services for identification, banking, healthcare and government.
The problems facing critical infrastructures have not gone by unnoticed and there
are numerous and strong ongoing efforts towards improving the current state
of affairs. Some of these approaches, e.g. micro-grids and smart-grids, aim at
restructuring current solutions, and constructing new ones, into more robust and
adaptive structures, and as part of this the associated SCADA systems undergo
similar revision.

A major goal for future infrastructures is thus that they should be dependable and
fault-tolerant, but also resilient. This means that they should be able to reconfigure
themselves to harness disturbances. In fact, resilience is needed on several
levels, both in the design and in the structure of the system itself, and also on
a higher, organizational and a lower, technical level. This is not to imply that
the undertaking of restructuring infrastructures is as simple as implementing the
right mechanisms in the right places, there are also inherent contradictions and
conflicts to consider. The Internet, for instance, is a prime example of a resilient
structure – unsurprisingly as the ability to withstand losses of large portions
of subnetworks was a major part of its initial design. Since the ability of data
packets to be rerouted around failing nodes provides resilient and fault-tolerant
communication at one level of the Open Systems Interconnection (OSI) model
[51], the advantages of this function can be wholly undermined by the inclusion
of more poorly designed protocols at higher levels. In any case, since it is likely
that as the prospect of software-intensive systems will have an increased role
in current and future infrastructures, essentially forming software-intensive

3.1. Approach 33

infrastructures, it is to fully investigate the ways in which all the peculiar details
of software can support or undermine infrastructure resilience.

3.1.2 Research Questions

Working from the perspective of the mission statement, the first research question
established was that of mechanisms. This entails working from the assumption
that it is indeed possible to establish different degrees of resilience in software-
intensive systems that are used as information processing systems in critical
infrastructures. Tied to this, is the hypothesis that the resilience of these systems
share a set of controlling principles. From this standpoint, we have found several
recurring patterns connected to effects that were beneficial to some degree for
the resilience of the system, while at the same time having notable consequences
that could be perceived as harmful. It is from this realization that the second
research question, concerning caveats, stems. This question addresses to which
extent such drawbacks can be managed. At this point, it was clear that in order
to properly answer this question, certain experiments needed to be performed.
During the design phase of these experiments, we saw that the models and
technical facilities at our disposal were inadequate in several respects. Before we
could begin resolving the problem, this situation had to be remedied. It is here
that the third and fourth research questions, concerning support and experiment
environment, are posed.

The research questions are detailed in the following manner:

RQ1– Which principal mechanisms exist for enabling and improving resilience
in software-intensive systems?

Software can (during execution) present, at least, two different degrees of re-
silience; fully resilient in regards to a specific disturbance, or non-resilient. These
degrees depend in part on the structured control of the abstractions that model
the execution that the software’s code describes, but they are also in part based
on the design and construction of the components which, when put together,
comprise the software’s environment. The connection towards the latter can be
readily illustrated by comparing the consequence of a malfunctioning software
that fails to adhere to any of the critical, enforced protocols which define the
boundaries of the interaction between the software and its environment, first
in a operating system model that do not enforce a process based separation of
privileges, such as MS-DOS, with ones that do, e.g. most UNIX kernels. Al-
though the separation itself does not protect the executing process from any of
the terminal conditions (access of unallocated memory pages, illegal instructions
and others) other processes running, and, of course, the operating system kernel
itself, will be able to continue. Looking at related, low-level structures, we can
discern similar patterns behind error-correction codes in memory circuits and the
hierarchical protection and recovery layers which govern filesystems. It is thus

34 Structure

desirable to find which, if any, such common denominators that generalize well
to comparably more complex systems and scenarios, and, as an intermediate
step, which of these mechanisms’ respective properties and benefits than can
feasibly be achieved.

RQ2– To which extent can the drawbacks or caveats associated with
virtualization be controlled?

The indirection implied by virtualizing one or several of the possible resources
of a computer (i.e. computation, storage and communication) imposes a certain
overhead, one that can be described as the product of the frequency of invocation
with the cost of each invocation, and it is therefore desirable to keep these two
factors at a minimum as a goal for optimization. For instance, the frequency of
invocation can be regulated with the design of the instructions that are eligible
by code, making them more semantically dense1, while the cost of invocation can
be reduced by mapping said code to more lower level code sequences that take
better advantage of underlying or surrounding components. However, these
actions can contradict each other and can impact other qualities in execution
adversely, e.g. how easy execution can be instrumented and understood due to
the increase in the complex dynamic interactions that are possible. It is therefore
relevant to examine how far the adverse consequences reach and the fine-grained
causes to those consequences, in order to construct and evaluate tools and
techniques for reducing or even eliminating these – effectively improving the
value of the virtualization.

RQ3– Among the sets of tools that enable dynamic instrumentation of
software-intensive systems, which are suitable for controlling virtualizations
in critical software-intensive infrastructures?

The development, maintenance and usage of software require a hefty amount
of tools of varied complexity, irrespective of which level of abstraction the de-
veloper, maintainer or user perceives him- or herself to be operating at. A short
enumeration of major such tools for development would include the editor, the
compiler or interpreter, the debugger, the testing suite, reference manuals, the
make system, revision control and so on. Some of these tools are obviously more
influential than others, but the morale is that the tasks of the respective stake-
holder are very tool-bound and the extent to which these tools can be configured
and how they effect the final product or service tends to be misrepresented at best
and ignored at worst. As these tools emerged and co-evolved tightly coupled
to the perspective of developing software rather than some larger scope, it is of
interest to determine which tools are available and to how large an extent these
tools can be used in a transition from software to software-intensive systems

1Which can be seen at a low level on CPUs that follow a CISC- design philosophy when compared
with a RISC- based approach, but principally similar on more abstract instruction sets.

3.2. Contributions 35

to critical software-intensive infrastructures, i.e. how they support monitoring,
measuring, altering, fixing and tuning complex, live, sensitive and deployed
subjects. Additionally, it is also necessary to determine if there are conflicts or in-
compatibilities between the mechanisms behind the tool(s) and the requirements
of the system, and how such conflicts should be resolved or circumvented.

RQ4– What core services and components are needed to construct experiment
environments capable of experimenting with the resilience of
software-intensive critical infrastructures, and which guidelines should
regulate such experimentation?

Computing has long had the oddity that the arguably best experiment envi-
ronment for conducting experiments is unsurprisingly enough, the computers
themselves. As the coordination and control required to raise the ante on what
can be examined this way is somehow connected to the development and refine-
ment of managerial facilities such as operating systems, there is well-founded
reason for increased concern as to how these facilities influence the final data
and the behaviours of the subject. It is nowadays far from a safe assumption
that the execution of a single program is isolated and protected from outside
disturbance or that its execution will be independent from previous ones made,
and the mere act of isolating the factors behind suspected disturbances is far from
a trivial matter. Furthermore, when the problem domain is more complex, which
is already the case with software-intensive systems of a fairly primitive sort, like
web applications and services, there are already enough variables present to
warrant extreme caution. If we then expand the domain further, to also include
a legacy-rich secondary structure (such as the power-grid) there are suddenly
several additional complexities brought on by foreign technologies combined
with a socio-political dimension. At such a stage, the composition and services
of the experimental environment itself becomes a legitimate subject of study.

The results that stem from the study of these questions and discussion relevant
to the validity of those results can be found in Chapter 7, Conclusions.

3.2 Contributions

The main contributions presented are as follows:

3.2.1 Paper I – The use and misuse of Virtualization

In this paper we examine the role of virtualization as a computing mechanism
for enabling resilience, which entails models, methods and principles for the
controlled experimentation with virtualization in a wide variety of forms. These
are primarily derived from historical sources combined with current examples,

36 Structure

along with the dissection of run-time support systems, virtual machines, inter-
preters and the likes, both from the world of programming languages and the
one of software security. To this end, we place heavy emphasis on the possible
benefits and caveats involved and how to successfully harness and control these
two central aspects. Thus, this paper has a strong focus on the interplay between
philosophy, methodology and technology.

As per the abstract; Virtualization is a term riddled with ambiguity. Yet, its various
forms are present all-through computing history and together they have essentially
become a sort of structural glue that fits various computing pieces together into the
complex patchwork that is currently referred to as software. In this paper, we examine
the foundation of virtualization to discern the benefits that can be reaped and the caveats
that inhibit its use with the end-goal of improving the construction of future systems
and the maintenance of current ones.

The paper has been submitted for publication in ACM Transactions on Computer
Systems, review pending.

3.2.2 Paper II- Retooling Systemic Software Debugging

This paper is primarily about the examination of key tools used when debugging
software. This examination is done in order to determine which fundamental
dependencies such tools have and which incompatibilities that may stem from
those dependencies. The consequences of likely incompatibilities are then illus-
trated by an industrial case that involves the transition from a closed embedded
setting to a more open one and the nature of the challenges that arise in main-
taining the dependencies of the tools involved. Combining these experiences,
the paper concludes with preliminary steps towards the advancement of coordi-
nation between such tools. Thus, this paper has an industrial/technical focus
and concerns problems that will likely play an important role in the near future.

As per the abstract; There are a few major ancillary tools that have long supported the
frustrating and time-consuming part of programming that is debugging. These tools
are, in no particular order, the symbolic debugger, the profiler, the tracer and finally
the crash dump analyzer. While the effort to keep these tools in-line with the overall
progress of development tools and developed systems has been strong thus far, there are
troubling signs of phenomena ahead which may seriously hinder further advancement.
One such sign is the role of the developer shifting from being in charge and control of the
development of one distinct piece of software to, instead, combining a large assortment of
third party components and libraries into a common service or platform. To help such a
situation, the underlying problems and how the properties of the tools involved interact
are first examined. Finally, this shift is exemplified through an industrial case and later
approached by outlining remedial complements.

The paper has been submitted to the International Workshop on Program De-
bugging at the 35th IEEE COMPSAC Conference, review pending.

3.2. Contributions 37

3.2.3 Paper III- Experimenting with Infrastructures

In this paper, we describe an engineering approach to the creation of a distributed
experiment environment that supports both the management of a SCADA- class
system coupled to a prototype intended for future smart-grid related endeavors.
The purpose of this environment is primarily to be able to study the intersection
between a specific form of an information processing system and a related
information system in a sensitive setting. In order to aid future experiments, the
focus is on the underlying structure and problems, both technical and political,
that may arise from the development of this, and similar, environments.

As per the abstract; Laboratory environments for experimenting on infrastructures
are often challenging both technically, politically and economically. The situation is
further complicated when the interaction between infrastructures is in focus rather
than the behaviours of a single one. Since ICT often has a key role in experiment man-
agement, data gathering and experiment upkeep – controlled experimentation becomes
even more difficult when some of the interactions studied are between ICT and another
infrastructure. The work described herein concerns design, implementation and lessons
learned from the construction of a joint-effort experiment environment for, essentially,
experimenting with infrastructures.
The paper was presented at the fifth international CRIS conference on Critical
Infrastructures (CRIS2010) and is published in the IEEE X-plore [4].

3.2.4 Comments

It should be noted that the related publications (Self-healing and Resilient Critical
Infrastructures [5], Analyzing Infrastructure Malfunction [6]) and (The empow-
ered user - The critical interface to critical infrastructures [7]) have been omitted
due to differences in scope but also because the relevance of the contents in
regards to this thesis is superseded by the included publications.

It should also be noted that these publications deviate slightly from their pub-
lished or submitted forms as formatting and layout have all been altered to fit the
overall format of the thesis. This includes references being merged and moved
to the references chapter. In addition, some explanations have been widened
or clarified and any more substantial alterations in respect to argumentation,
definitions, results and figures2 are listed in the errata section at the end of each
chapter.

2The figures that had a rasterized source-format in respective publications have been vectorized for
the sake of readability.

4 Use and Misuse of Virtualization

The layout of this chapter is as follows:
Setting the Scene covers trends and changes in the components and scope of
software-intensive systems. Approaching Virtualization then depicts applied virtu-
alization, but as a primary mechanism found in executing software, rather than,
e.g. a means for running several guest operating-systems on a single computer.
In Possibilities, a wide assortment of virtualization benefits are briefly covered.
In Caveats it is argued that there are inherent risks and complexities that follow
with the possibilities discussed and which ultimately need to be accounted for.
Lastly, in Moving Forward, several approaches to account for some of these risks
are suggested.

4.1 Setting the Scene

That computers have become key components in the controlled processing of
large quantities of information is a fact. Considering the short timeframe dur-
ing which digital computers have been available, this development is not only
impressive but also a testament to their versatility and potential. The technical
development is particularly interesting, not because of the increase in clock fre-
quency from hertz to gigahertz or in storage capacity from kilobytes to terabytes,
but rather because of the transition from one-shot automated calculation to dy-
namic and adaptive heterogeneous systems where key information can only be
extracted during run-time.
In a similar fashion, the main task of a programmer has also shifted somewhat,
from being focused on the implementation of a few selected data structures and
algorithms to stitching together components of varying levels of abstraction,
provided by large frameworks and libraries of functions, into a coherent, solution
targeted to some specific need or purpose. This latter challenge, we reckon, is by
far the most complicated one; a challenge illustrated in part by the apparent need
not only for sophisticated programming languages for describing an intended
system but also by the collection of tools needed to piece together and produce
the software in its final static form.
Furthermore, the hardware involved cannot be considered as merely a compact
version of the ancient behemoths. Computers have not merely become more
compact while growing in capacity, they have also been been complemented by,

39

40 Use and Misuse of Virtualization

amongst other things, large assortments of specialized processors designed to
explicitly off-load heavyweight calculation, enforce various forms of protection
and so on.

Most of these auxiliary processors, generic or specialized, can be programmed
to a certain degree and strong benefits can be gained if these are coordinated
optimally. With firmware, microcode and other low-level instruction formats that
are at least partially modifiable and also allow components with a previously
fixed behavior to be adaptive and dynamic, the age-old distinction between
hardware and software no longer seems that relevant. Thus, the refinement
and advancement of efficient programs and services that rely on such separa-
tion are probably not the most productive ways to move forward. Even the
embedded systems that for the most part could initially be considered isolated
and separated, with clearly defined roles and responsibilities, exert dynamic
qualities, which is illustrated in the rapid development in cell-phone platforms
and technology [6].

For these reasons, the dynamic side of software execution has become the focal
point of a lot of interest. However, the dynamic software landscape is compli-
cated, and made possible only through many layers of advanced support where
dynamic linking, garbage collection, reflection and similar technologies can be
considered almost anatomical1, features. In addition, source code, being the most
widely used causal model for understanding the detailed behaviours of a specific
software system, explicitly hides these features and can only be considered a
primitive model for the executing software, at best [8].

Take the crude description of the dynamic side to computing above, and add to
this the wide-spread communication technologies that characterize the internet
and the world wide web. These technologies further push the envelope by
stripping away locality so that programs or smaller pieces of code can be pieced
together from essentially all over the globe, or allowing a computing task to be
split and divided across several computers in a seemingly transparent fashion.
However, the problems and dependencies that come with these technologies
do add up, making it increasingly difficult to predict future system behavior or
even simply obtaining an accurate overview of the parts and pieces involved.
This forces us to treat some software-intensive systems as a combination of large,
complex, open, dynamic, heterogeneous and concurrent processes.

All the above-mentioned factors and shifts combined serve as a major incentive
for improving the ways in which we analyze, maintain, improve and experiment
with systems of this nature. This chapter entails an important enabling mecha-
nism for such tasks, virtualization, a mechanism which we wholly depend on at a
very fundamental level.

1Anatomical in the sense that no matter what software- subject is being dissected and studied,
some specific components are very likely to be found.

4.2. Approaching Virtualization 41

4.2 Approaching Virtualization

This section starts with a rough definition of virtualization. The aim is to untangle
it to the extent where it becomes possible to discuss benefits, risks and productive
ways of taking advantage of respective capabilities, not in the sense of developing
software as such, but rather to be able to understand (reverse-engineering) and
refine (optimizing, adding features and correcting undesired behaviours) the
sort of complex software-intensive systems that were depicted in the previous
section.
It should be noted that the discussion which follows is broader and more generic
than some more specialized cases that are also referred to as virtualizations,
namely running several operating systems (guests) inside another (host), Fig. 4.1.
This particular form of application will not be covered in detail here, but such
discussion can be readily found elsewhere [9, 10].

Program

OS Layer

Program

Machine

Program

Operating System

Program

Machine

Virtualization Layer

(a)

(b)

virtual space

Figure 4.1: Crude model of a program running on a multitasking OS with process
separation (a) alongside a hypervisor / VMM model (b).

The basic definition of a virtualization is the abstraction of computing and its
resources. Judging by the range of publications on the subject, there seem to be at
least thirty or so commonly added prefixes such as para-, network-, platform-,
resource- and so on, all used to further highlight or emphasize some particular
aspect or property. While it seems quite possible to establish a taxonomy of
these different types and subtypes, and the overlaps and ambiguities involved
seem to warrant the research and development of a comprehensive one, but this
is far beyond our intended scope. It is likely, however, that the definition and
perspective that this section stipulates apply to a larger assortment of work on
virtualization, although making such a contribution was not our goal.
Deconstructing this definition, computing here modeled as

computing = code + execution (4.1)

42 Use and Misuse of Virtualization

Memory

Control Unit
Arithmetic
Logic Unit
Accumulator

INPUT OUTPUT

Storage

Communication

Computation

Figure 4.2: Von Neumann architecture and its virtualizable components.

Using the von Neumann architecture, as per (Fig. 4.2), the resources that can be
subjected to abstraction become clear and they are thus: storage, communication
and computation.

A virtualization is established by determining which of these components that
are to be virtualized. The particular case where all three are being covered, is
referred to as a whole-system virtualization, better known as a virtual machine. On
a higher level, it can be said that the act of virtualizing one or more components
of computing in effect de-couples code from the semantics and syntax of one
machine (or parts thereof), and re-couples it to another one. It then becomes the
responsibility of the virtualization to implement the translation between these
two formal spaces.

To exemplify this procedure, consider the program, a, which has been either
written for, or compiled to, an instruction set native to a specific machine. The
instruction set definition covers not only the state transitions that each instruction
will perform, but also which exact binary sequences that correspond to which
instruction, i.e. its representations. If a machine operating using a different
instruction set, b, would be configured to execute this foreign code, it would
most likely output an illegal instruction error or, in a densely packed instruction
space2, unproductive state transitions. If we, instead of trying to execute the
code intended for a directly, write code using the instructions of b that decode
the sequences corresponding to a and maps these to a corresponding version
in b, we have essentially decoupled the program from the first processor, added
an indirection (which performs the translation) and in effect, formed a (partial)
virtualization of the computation performed.

By finding the mechanism(s) through which a subsystem communicates with
other parts of a system, we can identify the interface(s) between components.
An interface can be seen as the dimensions and boundaries of data exchange. If
there are rules which impose restrictions on the flow across the interface and

2An instruction set where most or all of the possible binary sequences have corresponding instruc-
tions.

4.2. Approaching Virtualization 43

that either side of the interface can verify and act upon (enforce), we have a
protocol. However, if there is an established flow which is implicitly assumed
(not enforced) we instead get a convention. An example of this distinction can
be seen by comparing the implementation of C- style function calls (within
a process) to operating-system calls (between process and kernel), where the
former assumes that certain data are to be present on the stack in a specific
order, but does not specify how it should be placed there, while the latter is
likely to require a regulated, stricter set of conditions in order to be invoked.
The benefits of distinguishing between the weaker convention and the stronger
protocol become clear in a situation where states and flows need to be analyzed,
as it is considerably easier to monitor and enforce trigger conditions on a flow
with a precisely articulated structure than to try and filter out all possible ways
that a certain state transition can be achieved. Merely identifying the presence of
a local function call that follows one of the handful of C- calling conventions out
there can be a difficult task, as illustrated by [62].

Virtual Space

Machine Space

VirtualizationMachine Space

(a) (b)

Figure 4.3: A virtualization, in effect, slices a state space into two parts.

Taking advantage of the interfaces which connect subsystems together, these are
the places where a selected virtualization can be implemented. The requirements
are quite simply that it is must be possible to inject code that intercepts all
interface points relevant to the protocols and conventions in play. It is, in general,
the properties of the injected code that will regulate the benefits that can be
achieved. In one sense, the main activity of this indirection3 is, as previously
stated, the dynamic translation between formal spaces. However, the actual
extent of this translation does vary with the complexity and size of the protocol,
the nature of the virtualized components and the merits of the underlying layer.

3There are corner cases that do not fit particularly well into this model, like the code swapping and
trampolines that are part of on-demand linking.

44 Use and Misuse of Virtualization

To further distinguish between forms of translation that an implementation of
a virtualization can perform, emulated and simulated (or modeled) translations
are here considered as different enough to warrant the distinction. In the case
of emulation, there should be one or more existing implementations that take
precedence in regards to ambiguities, imprecisions and conflicts in the protocol(s)
involved. A proper emulation should therefore take such variations into account.
By contrast, a simulation can be considered as a limited, single interpretation of
the protocol(s), one that only has to resemble parts of the protocol(s). This greatly
reduces the number of virtualization benefits that may apply.

pre-execution post-execution

input

Figure 4.4: The virtualization ideal.

In essence, what a virtualization aims to establish, as illustrated by (Fig. 4.3), is
the subdivision of a state space, (physical OR virtual) into essentially two parts,
a virtual space and its respective (pseudo-) machine. The latter term is used
to illustrate that during execution, the virtual space is necessarily dependent
on the operation of its machine(s). Events that affect the machine can therefore
propagate to the virtual space. Putting this fact aside for a second, the optimal
situation for a virtual space is shown in (Fig. 4.4) where the execution-flow
through the program is solely controlled by the input available to the machine
upon execution. Each executed instruction imposes a transition in the state
space from one state to another. Whenever this reaches a point where there are
either no more instructions to be executed, or the current state is such that the
machine will interpret it as a reason to terminate execution, and the system will
be brought to a post-execution state. A major property to emphasize here is that
of repeatability. Given the same input to the same program, the output discernible
at the post-execution state will be identical between repeated execution runs of
the program.
As suggested by the initial definition, there is a certain overlap between virtual-
ization and the comparably broader notion of abstractions. While abstractions
can be considered as being ideas distanced from objects, computing abstractions
such as a function, a procedure or a method may well be modeling artifacts that
do not have to be present during execution. By contrast, virtualization in the
sense described here, concerns the embodiment of an abstraction. As such, its

4.3. Possibilities 45

mechanisms can be both measured and altered and do have influence on the
state of the larger formal system. Compare, for instance, the case of a function
written in C that has been declared extern to one that has been declared static.
In the extern case4, the compiler is forced to emit code to deal with invoking a
function while in the static case, the compiler can remove the encapsulation of
the function entirely in the name of optimization.

From these definitions of virtualization, interface, protocol, emulation and simulation,
there are a few conclusions that can be inferred as to the merits of the specific
phenomena which they reference;

• A virtualization by itself, cannot provide additional capabilities that sur-
pass the respective capabilities of the machine that enables its execution.

• It is unlikely that there are zero or just one virtualization involved in the
execution of a program on a computer. Rather, we are dealing with possibly
large and complex hierarchies of nested virtualizations.

To summarize this section, a virtualization is considered to be the code patterns
that implement the translation between a computing abstraction and its underly-
ing machinery, which itself could be a virtualization. This implies an indirection
in terms of the access to one or several of the primitive resources of a computer,
i.e. communication, calculation and storage. The virtualization imposes a split
of the state space of the machine (the native instructions) into a virtual space
and a machine space. A partial evaluation criterion in this regard is that code
bound to the virtual space will not execute in the space of the machine without
the explicit translation and governance performed by the virtualization. Data
and code exchange between the two spaces is bound by the respective interfaces,
protocols and conventions used for communicating with the virtualization.

4.3 Possibilities

It is something of an optimization adage that the computing that is neither needed
nor performed, is the quickest form of computing. In other words, there is no point to
implement things that do not serve any explicit function. As any virtualization
implies one or several indirections that do not benefit the executing system as
such, it is reasonable to expect some sort of tangible benefit that motivates imple-
menting and maintaining a running virtualization, apart from soft preferences
such as aesthetics5. This section is used to highlight a rather wide, if not conclu-
sive, assortment of goals that virtualization is instrumental in achieving. A more
brief, but similar assessment can be found in [11].

4Or perhaps even more distinct, when calling a function through a pointer.
5While interesting in some regards, such factors are not considered in this thesis.

46 Use and Misuse of Virtualization

Compatibility6 is arguably one of the stronger such possibilities of virtualizing
computing resources. It is often touted as a hallmark benefit of programming
languages specifications that include not only the semantics and syntax of the
language, but also the characteristics of the execution environment it is intended
to run inside, using selling points akin to acronyms like Write Once, Rune
Eveywhere (WORE). Apart from such design-phase foresight, a more direct
form of compatibility can be added to already deployed systems in the form
of whole-system virtualization implemented using emulation. This has been
most powerfully used on software built for machines that have, for some reason,
fallen out of favor (backwards compatibility), but is used also when writing
code for future systems where the end hardware is unavailable or accessible
only in limited quantities. The difficulty of the task in implementing such a
virtualization depends greatly on the complexity of the protocol(s) involved and
can be found at different levels of abstraction when looking at larger projects
such as Multiple Arcade Machine Emulator (MAME) [63] alongside the Wine Is
Not an Emulator (WINE) [64] Win32 API re-implementation, illustrating both
the difficulties and the varying overhead involved.
Adaptive optimization is an interesting opportunity and the subject of much work
in the direction of specializing a computing task to current runtime conditions
[12]. It can be applied to the virtualization itself or to the virtualized space. In
a traditional sense, optimization has been a major focus for static analysis tech-
niques, particularly as an important step in static translators such as compilers.
As previously static decisions are being pushed into the run-time realm, decisions
on where and when to apply various optimization techniques will also have to
be done at run-time. Then, you get access to more advanced and target-specific
systemic optimization strategies7 that use operating system level information on
current conditions as part of the heuristic. One of the more versatile efforts in
this direction is the Low-level Virtual Machine (LLVM) project [13].
Resilience is the ability of a system to reconfigure itself to minimize or harness
disturbances and can be seen as both a complement and a contrast to fault toler-
ance and dependability. An example to this effect can be found in the comparison
between two software systems which both implement some kind of multitasking
between programs where one of the systems use virtualization in the form of
process separation while the other system instead makes sure that the programs
are cooperatively multitasking, in the sense of coroutines or similar constructs,
so that they are able to yield execution and other resources back and forth in a
cooperative manner. In such a system, we run the risk of some kind of error (say
a live-lock preventing execution to be yielded or a wild memory write hitting
an invalid address or data belonging to another task) that adversely affects not
only the system-specific task but cascades to other tasks as well. For the system,
however, the live-locked process can be preempted so that the memory writes

6Also referred to in some settings as mobility or portability even though these terms are not entirely
synonymous.

7This is more fine-grained than, for instance, the compilation directives of optimizing either for
speed or for size.

4.3. Possibilities 47

will either hit pages belonging to the process or unallocated pages, generating
a trap which can be acted upon. Ideally, the other processes should go on un-
scathed. This illustrates a horizontal form of protection, meaning that parallel
instances of the same virtualization are kept separated. Consequently, vertical
protection guards against some unwanted problems that may exist in lower
hierarchies of the same involved resources. To exemplify this, consider RAID
[1]. In RAID-based storage philosophy, a common abstraction such as a file or a
device gets a configurable translation (RAID level) which distributes read and
write requests across several devices to form a virtual volume. This can be used
with a parity component for the stored data to survive a certain amount of device
failures, or to improve performance.

Software Security is to a large extent centered around the idea of being able to
separate, prioritize and regulate access to the resources of a machine, and is in this
regard an interesting dimension of virtualization-based separation. That which
characterizes software security is, however, not this particular demarcation in
itself, but rather the presence and the likely consequences of a conflict of interest
between the stakeholders of a system and an assumed antagonist, where the
many flaws in the interplay of a computer and the code it runs become the
playing field where this conflict is acted out. The antagonist(s) actively search for
the specific flaws that can be used (be exploited) to take control of the machine
in its entirety or of some interesting subset. Meanwhile, the stakeholders work
towards finding and eradicating these flaws. A direct consequence of this arms
race is that many of the actual problems that hide behind the implementation
of a certain separation is brought out into the open where it may serve as a
formidable basis for the study of virtualization mechanics.

Maintenance is a considerable part of the later stages of a software’s life-cycle.
Normal maintenance tasks, e.g. system administration, cover things such as
installation, applying security fixes and other forms of upgrades, but also debug-
ging. These are probably the more prevalent and prolific uses of virtualization
technologies. One major such technology revolves around snapshotting, i.e.
storing the virtual space in a form that can be analyzed offline, distributed and
re-instantiated on other machines, or reverted to in case of failure. Attempts
along these lines are often creative, like skewing time on emulated embedded
systems so that they can execute on a faster machine than the target platform,
essentially aging the virtual space more quickly than the targeted physical hard-
ware would allow as a means for getting better test-cases or lowering the mean
time to a specific failure.

In the end, the benefits one might gain from virtualizing parts or the whole of the
targeted or intended system will, of course, vary somewhat depending on the
specifics of the system and the application domain. However, while it is likely
that some virtualization techniques can be embedded into a system fairly easily,
it takes considerably more preparation to make use of all of them, even though
this may be possible.

48 Use and Misuse of Virtualization

4.4 Caveats

A well-known quote attributed to David Wheeler is that ”All problems in computer
science can be solved by another level of indirection” with the equally arguable
response being something like ”except for the problem of having too many levels of
indirection”. This is a statement which captures the misuse of virtualizations
fairly accurately – and it turns out that the problem of having too many levels
of indirection may well surpass the problem these indirections were meant to
resolve.

This section primarily illustrates that although virtualization and associated
techniques can be added and embedded into any computing system with relative
ease, the benefits that they bring may come at a considerable cost. The section
also describes the most important problems that need to be addressed. These
problems correspond to the sections in Possibilities, but are differently grouped:
External and Persistent states, Dynamic processes, Performance, Homogeneity, Software
Security.

4.4.1 External and Persistent States

Expanding on the abstract figure of the virtualization ideal (Fig. 4.4), we get
(Fig. 4.5) where the two major additions are the notions of persistent states and
of external states8. This highlights the principal challenge for any virtualization
effort: in order to successfully take advantage of the presented possibilities
(without adverse side effects), central dependencies in these two categories need
to be controlled, even eliminated, if possible. To clarify: persistent states refer to
data which somehow influence the execution of a program and that are not part
of the static input, configuration. As an example, using process separation as a
vantage point, a persistent state would be something akin to a database where a
program can store configuration options that can be written to and/or read from
intermittently. Thus, data stored will persist after a program has been terminated.
In a closely related fashion, we have other external state holders which may be
shared between different processes, such as file- and socket- descriptors and
pipes. The principal criteria is that a state holder is closely tied to something that
resides outside the virtualized space.

For a more programming-centric example, consider a function from an impera-
tive language such as C in relation to the virtualization-ideal model. Its inputs
are the arguments that can be passed to it and its outputs are the value(s) that
the function can return. Provided that we enter/have the same arguments, the
outcome of the repeated executions of the same function, whatever its purpose,
should return the same values. However, if the function uses the value of a
variable declared in a dynamic scope for input to a calculation, or a conditional
expression at some point during the course of its run, these accesses will also

8Not all external states are persistent but all persistent states are by definition external.

4.4. Caveats 49

Pre-execution Post-execution

Input

External State

Persistent State

Figure 4.5: The fundamental problem.

need to be controlled in order to ascertain that repeated executions will return
the same output. The dynamically scoped variable is thus an external and per-
sistent state holder within the context of a certain function implemented as a
virtualization. Consider something more representative of real software than
this short example and the number of external and persistent state holders is
suddenly vast. Some of these state holders are inherited from the execution
environment and the operating system while others emerge from the interaction
between programs and between programs and their auxiliary systems.

As a rule of thumb, the code present in the virtual space is either larger than or
equal to the corresponding code that will be executed in its respective machine
space, giving the instructions a multiplicity of one to one or one to many. This also
relates to the performance model (Eq. 4.2, Sect. 4.4.3), but has other consequences
as well, for instance the ability and granularity with which one can instrument
and relate measurements gathered to code that is assumed to be causally relevant
for said measurements. This problem is related to one of the challenges in
constructing debuggers with source-code level symbolic representation. For each
statement in the source code, there can be 0..n corresponding instructions in the
final code9. In fact, these instructions do not have to be exclusively bound to only
the corresponding statement in the source code, they can be reused wherever
reasonable, reducing the accuracy and usefulness of the breakpoints.

It has previously been established that one intended effect of virtualizing one or

9Zero matching instructions when the statement has been removed through subexpression elimina-
tion or similar form of optimization.

50 Use and Misuse of Virtualization

all resources should decouple the instructions that correspond with the use of
these resources and recouple the instructions to the protocols of the virtualization.
This would, in effect, render the specifics of the resources entirely opaque from
the perspective of the virtual space. If this is not the case, a program could be
constructed with the instructions of the virtual space that would depend not
only the presence of an implementation of the protocols in play, but also on
the specifics of the underlying machinery producing a consequence which is
contra-productive to several virtualization goals. As covered from a security
context in [14] and elsewhere, it is, however, difficult for a virtualization to hide
itself in such a way that a program executing inside the virtual space can neither
detect the fact that there is a virtualization present nor make out specifics of the
underlying machine. This means that there is also the risk of a program being
coupled to both the virtualization and a machine.

4.4.2 Static Versus Dynamic Processes

A lot of effort has been put into both development processes and tools in order
to affix descriptions (which is source code) of intended program behavior to the
behavior of the final code that will be executed. This is an important link to
maintain in order for these descriptions to function as predictive models for
actual program behavior during execution. Unfortunately, even for languages
where the run-time support system can be made very minimalistic, such as the
case with C, there is a considerable discrepancy between what the source code
describes and what is actually being executed. This is the case even before we
consider the full involvement of build systems that coordinate and configure the
large array of tools involved.

1 #include <dlfcn.h>
2
3 int main(int argc , char* argv []){
4 static int (*fp)(void);
5 int* handle = dlopen("input.so", RTLD_LAZY);
6
7 if (handle){
8 fp = (int (*)())dlsym(handle , "infun");
9 if (fp) fp();

10 }
11
12 return 0;
13 }

Figure 4.6: Dynamically loading a shared library (in C), searching for the symbol
’infun’ and handing execution over to the corresponding code injected by the
dynamic linker.

4.4. Caveats 51

As the virtualization efforts get more involved when combating the other prob-
lems described here, this discrepancy widens, further diluting the relevance of
source code as a predictive model for runtime behavior. As an example to this
effect, consider (Fig. 4.6) in relation to (Fig. 4.7) in the sense of the events they
describe in comparison to what execution of the code will accomplish. Although
these figures have been constructed to specifically illustrate the problem, the
actual occurrence of the underlying pattern can also be quite readily found in
production code, but in a slightly less obvious form. In (Fig. 4.6), we cannot
discern much about the execution before considering the activities of the dy-
namic linker, for which in turn we need data on environment configuration such
as the LD PRELOAD environment variable used by, amongst others, the GNU
LD linker [65]. In the (Fig. 4.7) case, things go even further. Not only does the
(Fig. 4.6) still apply, we also need to know the contents and exact order of what
was being passed through the TCP socket. As the word implies, the dynamic
case requires one to consider a time-frame as well; there is not only a where and
what but also a when to consider. This is illustrated by the on-demand linking
feature of dynamic linkers. On-demand linking means that when a library is
loaded, the actual code for all functions is not necessarily loaded into memory.
Instead, placeholder code will be loaded at referenced addresses which, when
executed, will link in the real code10 [41]. These dynamic aspects at all times
when there is a virtualization present that, for any reason, needs to be analyzed
and instrumented.

1 require ’socket ’
2
3 TCPServer.new (8080).accept.each_line {|a|
4 eval(a.strip)
5 }

Figure 4.7: Scripted dynamic loading (in Ruby) where each line of text sent by
a client connected to the running program will be reinterpreted as code in the
virtual space.

4.4.3 Performance

Undoubtedly, there is a certain overhead when performing the translation be-
tween formal spaces during run-time, especially if the instructions are to be
monitored and verified as well as per the distinction between convention and
protocol. The question then becomes, if (or when) this overhead is negligible or
not.

10This process can, however, be used to intercept and hijack execution. A mechanism which
surreptitious software and run-time instrumentation techniques often take advantage of.

52 Use and Misuse of Virtualization

Because of the sheer amount of adaptive processes which influence performance
one way or another, there is a strong incentive to include code that account or
compensate for changes in the environment (operating parameters), throttling
CPU frequency, as suggested in [42]. This is especially important in embed-
ded and mobile systems where performance problems concern notably finite
resources such as remaining battery charges.
As we deal with several levels of interconnected abstractions, and it is difficult
to establish accurate and reliable metrics, we go no further than a tentative rule
of thumb, e.g. the model in Eq. 4.2.

overhead = invocation f requency× translation cost (4.2)

Note that in this model, we do not consider the actual cost of the computation
itself. The performance consequences captured are closely related to the prob-
lem described in Sect. 4.4.1 on the density of protocols primarily exposed to
the virtual space. Compare, for instance, between the use of direct translation
(interpretation) between two different CPU instruction sets when employing vir-
tualization implemented using emulation in order to achieve compatibility and
using some optimization technique such as dynamic translation (aka. dynamic
recompilation, just-in-time compilation, etc.). This is a well-known and expen-
sive operation as each instruction in the foreign instruction set requires code
which decodes said instruction and maps it to the most reasonable instruction(s)
in the native instruction set, while at the same time accounting for other differ-
ences between host and foreign CPU, including registers and memory model.
Even for fairly primitive foreign CPUs, the translation cost alone can be a factor
over several hundred times compared to the assumed minimal 1 to 1 mapping.
In addition, the invocation frequency of the instructions may even be higher than
the actual clock of the native CPU, although this is probably a rare phenomenon.
With dynamic translation, the translation cost is gradually lowered as invocations
are replaced with the result of earlier translations, either directly or after a set
number of invocations have occurred. The downside is that this can have the
opposite effect on highly dynamic code. For some applications, there is also
a, more uncommon, third option in the form of High-Level Emulation (HLE),
which minimizes both invocation frequency and translation cost by matching and re-
placing patterns as smaller ’idioms’ [43] or as larger ’functions’ with hand-tuned
logical equivalents in the code of the machine space.
What is troublesome or ironic in this regard is that when encountering perfor-
mance problems with a certain virtualization, the tendency is to sidestep the
separation entirely. For instance, in the case of programs contained in operating
system processes that need to exchange data, the common mechanisms using
monitored barriers, such as sockets and pipes, might turn out to be too slow
or intrusive due to rescheduling forced by a context switch. This may well be
desired from the perspective of an operating system, but could be devastating
for a certain process. The compromise is to use shared memory where some
memory pages are mapped to belong to several processes rather than reserved

4.4. Caveats 53

for one. This reduces the benefits of the separation as a resilience mechanisms,
but at the same time increases the complexity of any analysis activities, as an
analyst debugging the program has to take the likelihood of shared memory
pages into account11. Another way to illustrate the problem would be in terms
of interpreter design and by balancing which parts of the built-in libraries of
a ’scripting’ programming language, such as Ruby or Python, that are imple-
mented in the code of the virtual space and which parts that are implemented
in the code of the machine. Parts that are likely to have either a high invocation
frequency, a large translation overhead, or both, get pushed to a lower level,
which essentially ”solves” performance problems with virtualization by either
stripping away said virtualization and/or by increasing the complexity of the
machine with further consequences down the line.

4.4.4 Homogeneity

An interesting effect of whole-system virtualization, is the initial homogeneity
that can follow. With homogeneity we mean the extent that the code in a virtual
space can be executed on a wider assortment of underlying machines. This is
possible if the virtualization can achieve the necessary translation, and may thus
need to be extended or ported to fit different machines. Thus, to a certain extent,
homogeneity is a desired property. The larger problem however, has to do with
retaining homogeneity as time goes by.

The main advantages that can easily be associated with the homogeneity caveat
is partly compatibility and partly maintenance. If we know that the number
of software instances and devices being maintained are identical, or at least
behave similarly to a large extent, planning, deploying and verifying updates
and improvements is an easier task compared to the case when all administered
components have unique properties to take into account. The compatibility
situation is similar. Considering the costs involved in developing software, it is
often desirable to reach as many customers as possible.

A BC

Figure 4.8: The feature set of two machines (a and b), and the feature-set (c) of an
abstract machine that a virtualization implements.

11These contents can also act as external state-holders as per the model in (Fig. 4.5).

54 Use and Misuse of Virtualization

On the other hand, with the rich assortment of machines and environments that
are in play and may be indirectly targeted, the challenge quickly becomes to
demarcate the software to some degree by specifying which environments that
are to be supported. With respect to virtualization, this means that the situation
depicted in Fig. 4.8 can happen, and no matter how the code in the virtual
space is formed, there will still be a relative complement of features that cannot be
reached directly. When a developer that, for whatever reasons, needs to reach
such features the available options are limited: He or she can either remove the
virtualization and maintain different versions of the code that used to be in the
virtual space or widen the virtualization to encompass all desired features, and
many developers opt for the latter solution. This is achieved through something
called ’native interface’ (like the JNI facility of Java [52]) or ’local bindings’.
Setting aside all the pitfalls involved in such an effort, the net effect is that many
of the virtualization benefits have been set aside and will be hard to regain.

4.4.5 Compatibility

Using virtualization as a means for establishing compatibility can, in a sense, be
achieved by retaining homogeneity. If the code in the virtual space is compatible
with other machines, the virtualization itself should, of course, be capable of
execution on said machine. A special case of this scenario is the briefly men-
tioned backwards compatibility. This compatibility is backwards in regards to
machines that are no longer actively produced, accessible or in any other way
not worthwhile to maintain in their original shape, but for which there still is
interest and demand for allowing previously written code to execute on more
current machines. This may be done for a variety of reasons. For instance, reim-
plementation of the code may be to costly or otherwise infeasible, or the reason
may be historic preservation.

Even if it evidently is possible to accurately reproduce or mimic behaviours of a
machine different than the one currently executing, it is a far greater challenge
to guarantee equivalence in every sense of the word (computation performed,
costs in terms of time and space). Thus, this is a risky subject for dependable
computing. The primary reason is the rich assortment of conventions and pro-
tocols in play and the lack of available specifications of said conventions and
protocols [15]. Take, for instance, the MOS-6502, which was arguably one of the
more well known and used processors during the infancy of personal computers.
There are numerous virtualizations that can interpret these instructions as part
of their virtual space, but on close inspection, they yield considerably different
behaviours, particularly in regards to timing (cycle accuracy), bugs and undocu-
mented instructions that a lot of existing code takes advantage of. It is not until
very recently [16] that there is an accurate description for one or a few versions
of this processor against which to verify emulator behavior.

4.4. Caveats 55

Adaptive Optimization

When using adaptive optimization techniques, homogeneity during execution
is purposefully ignored and considered only a static artifact. Each virtual space
is actively re-tailored to match the current state of affairs and the current capa-
bilities of the machine. In theory, this has the potential to beat static compiler
optimizations, because of the gained ability to dynamically, rather than predic-
tively, manage changes to the conditions of the machine including instruction
scheduling and throttling CPUs. In practice, since the only ever acceptable code
alteration that should be performed is the one that gives net gains in performance,
many optimizations will be infeasible as adverse effects to shared external state
holders are difficult to establish in advance.

In principle, the overhead in the dynamic reevaluation of code and of monitoring
changes to operating conditions is accepted to gain the possible advantages of
code more tuned to a specific machine. It is true that the overhead involved
can be made comparably small, that there can be large gains, and that the
overhead is to some extent necessary in order to combat other performance
degradations as described in Sect. 4.4.3. On the other hand, these optimizations
necessarily involve quite drastic dynamic alterations to the code in the virtual
space or to its translation, sometimes to an extent that there is interference with
other goals. These goals include security concerns such as interference with
code-signing, antiviral pattern matching, dynamic protections like WX [66] and
opening possible new side-channels for timing attacks on cryptography – all of
which may have severe consequences.

Another serious concern is the ever-present possibility that the altered code may
trigger some unexpected corner case and influence the computation adversely.
Compiler bugs are far from unheard of and a dynamic optimizer shares some of
the same risks. Bugs introduced at such a stage have all the hallmarks of being
difficult and expensive to resolve, especially since the criteria that triggered
optimization are not stored and are not likely to be contained or deducible from
a snapshot of the virtual space.

4.4.6 Software Security

Software security is troublesome in many ways, partly because it is usually
sufficient with a known, exploitable problem, i.e. a vulnerability, for a software to
go from supposedly secure to guaranteed insecure. Starting with the common
problem of homogeneity, we will now discuss the darker side of the write once-
run everywhere mantra. The problems related to this can apply to programs
that the stakeholders would not want running but which may still be part of
the antagonist’s attack strategy, e.g. viruses, backdoors, worms, ... Technically
advanced attacks on the one hand, like remote-code execution with ROP [17]-
based payloads, require a lot of target-specific fine-tuning to successfully take
control, and thus represent a smaller attack vector than the one found in a more

56 Use and Misuse of Virtualization

widely deployed virtual machine. Furthermore, if the virtualization is so large as
to contain the antagonist’s direct target, there is less incentive to create a lower-
level machine-specific directed attack. This is a major factor behind the recent
rise in web-browser directed counterparts: most of the interesting and sensitive
data is present within the virtual space(s) of the browser. A strong example to
that effect can be found in the detailed and advanced exploitation of an integer
overflow vulnerability in a certain version of the FlashVM [67] a vulnerability
that was used to break through several levels of virtualization-based protection.
Additionally, it has been shown disturbingly often how the seemingly strong
protection of many virtualizations can be circumvented to expose or directly
program the underlying machine(s) and even how several virtual spaces can
be coordinated into obtaining privileged control of a target [68]. Sometimes,
the virtualization-friendly features of hardware are taken control of in order to
virtualize the host Operating System (OS) itself [69]. This can be further fueled by
the potential conflict between, on the one hand, interests which seek to protect a
certain piece of software and its data from unauthorized access (which is the case
with many copy-protection systems and other forms of surreptitious software
[39] and Digital Rights Management (DRM)) and, on the other hand, users with
needs within respective legal systems that are hindered or counteracted by these
protections. A drastic case in this regard can be found in the case of a certain piece
of DRM protection bundled with some music CDs [18] where the DRM system
installed itself in a lower ring of protection (as a device driver) instead of as a
regular process and, in doing so, exposed privileged features that were otherwise
inaccessible or protected. Viruses were soon developed to take advantage of
these exposed features.
Lastly, some security measures placed in outer rings of protection do not neces-
sarily propagate inwards, meaning that if some part of the virtual space allows
for the same principal security issue that the protections were added to resolve,
they may need to be reimplemented in the virtual space as well. As a simple
example of this effect, consider tracking ’cookies’ as a feature in web-browsers
used by some websites to track user activity not only on the own site but on
other sites as well, essentially recording the user’s browsing habits. To assist
the privacy- minded users, some web browsers added the ability for a user to
wipe such cookies when the browser terminated (or even reject them from the
start). However, as this tracking technique only requires a bidirectional commu-
nication link and some form of persistent storage, it is trivial to re-implement
the feature within some nested virtualization that is unaffected by the browsers
’wipe’ feature – such as the Local System/Service Operator (LSO) facility of the
Flash Virtual Machine (VM).
Concluding this section on virtualization caveats, there are a few major points to
emphasize:

1. A problem can inadvertently be reshaped from appearing in one form
(such as a terminal conditions in the form of a crash) to instead manifest in
another (such as insufficient or degraded performance).

4.5. Moving Forward 57

2. Circumventing performance degradation linked to a virtualization risks
stripping away some of the benefits of the virtualization, or increasing the
complexity of the dynamic behaviours of the end system.

3. Static behavior can inadvertently be changed into dynamic.

4. Virtualizations are likely to leak, meaning that they expose properties of
their underlying machinery, breaking encapsulation. This can happen
directly through inaccuracies in protocol implementation or, perhaps more
likely, or through the use of side-channels in another resource, or through
the use of external state-holders such as a foreign clock.

5. When the code executing in the virtual space depends on the behavior
linked to leaked properties or external state holders, virtualization benefits
may no longer apply.

6. Benefits from one level of virtualization are far from guaranteed to be
inherited when chaining several together into hierarchies of nested virtual-
izations (See Fig. 4.12 for an example).

4.5 Moving Forward

If we take the aforementioned caveats into account, and assume that we need
virtualizations on many different levels in order to avoid reducing computing
back into to the realm of automated calculation, it becomes necessary to refine our
use of virtualizations, and increasingly integrate them into serious development
and maintenance processes. In this section, we explore a series of principles that,
to a varying degree of system specificity, aim to accomplish such goals.

4.5.1 Prerequisites

For the following principles to be applied and evaluated against a specific target,
an experimental environment that effectively encapsulates a subject is needed.
This environment acts, in a sense, as a virtualization itself. Such an environment
must provide a setting in which the effect of the generic actions that are depicted
in (Fig. 4.9) can be evaluated. We have previously worked on such environments
for the evaluation of infrastructure protection measures [19] and are currently
working on refining these environments [4]. Hence, an environment sufficient for
experimenting, applying and evaluating these hardening principles to a software-
centric subject, follows the same rules and limitations as other virtualization. In
other words, the phenomenon is recursive.
Methodically speaking, the actual process of working with these principles on the
experiment environment and on a subject, is similar to that of other experiment-
oriented endeavors and follows the basis laid out in [44]. The starting point is
an initial view of the system, (Fig. 4.10) which refers to the analyst’s current

58 Use and Misuse of Virtualization

Vn Vn+1

Subdivide

Measure

Intervene

Represent

...

Figure 4.9: At each step, we have general activities that refine our view of the
system or physically change it.

perspective of the system. From here, one out of several generic actions can
be carried out, (Fig.4.9). These actions are: subdivide, measure, intervene and
represent. Each of these actions aims to advance the analyst’s understanding of
some phenomena in a system to and beyond the point where he or she can take
remedial action.

To examine the actions a bit more closely:

• To subdivide means to traverse up or down the chain of virtualizations,
consequently widening or shrinking the scope of the (sub-)system studied.

• To measure means to gather data using whatever means possible, e.g. log-
ging devices, debuggers, data probes, system traces.

• To represent means to take the measurements and transform them into a
more intelligible form, either as native representations such as the source-
code mapping done by a debugger on a triggered breakpoint, or non-native
representations (Fig.4.11).

• To intervene means to alter or tamper with the subject in some way, e.g.
fault-injection.

What is currently missed and underdeveloped here, but relevant considering the
scenarios depicted in Sect. 4.1, is the underlying assumption that a virtualization
ideal can be established at some level. That level can thereafter be considered
the current experiment environment and that the activity of subdividing into
secondary and tertiary etc. levels rely on this assumption. However, as there are
many scenarios where this is unfeasible and where the opposite will be true, i.e.
where there is limited control with an unknown number of central components
and where the level of virtualization used as experiment environment may need

4.5. Moving Forward 59

V0
V1

V2

V3
Action #1Action #3

Action #2

Action #4

V4

Figure 4.10: An interactive, explorative process. Starting from an initial view
of the system (v0), we progressively achieve a refined understanding of its
constituents and their respective behaviours.

to link with similar or related environments such as the internet. Preliminary
work to that effect can be found in [4].

4.5.2 Principle One, Tighten Boundaries

The first principle concerns the circumference (horizontal) and level (vertical)
of the intended virtualization. To better illustrate the underlying intent, con-
sider (Fig. 4.12) which depicts a non-exhaustive map of some of the abstractions
probably involved in running a piece of end-user intended software on a rea-
sonably modern computer, roughly ordered by level of abstraction compared to
the physical machine. Note that there is a certain amount of overlap that is not
being shown clearly, particularly horizontal boundaries on higher levels as some
abstractions, e.g. streams that can map to either files, communication sockets

60 Use and Misuse of Virtualization

21

20
22

19 18 17

Figure 4.11: Two examples of non-native representations used to hi-light specific
attributes. To the left, there is a poorly balanced binary tree and to the right,
some mild fragmentation in a memory or file system.

or processing like encryption or compression, dilute the distinction between
primary resources12. Also note that the proper function of a given position
depends on the proper behavior of all underlying levels and that these levels
also correspond to several individual dynamic adaptive systems.

Computation Communication Storage
CPU DSPs North/Southbridge HDDRAM

NIC USB MMUKernel
Kernel Kernel

IDE, ...
KernelLinker, Libraries (libc, ..)

Userland program(s) Network stack(s)
Routing

Socket layer

kmalloc Filesystem

libc malloc /
file routines

Interpreter
Native bindings

RMI, Serialization
GC

Serialization, XML, ..Dynamic Recompilator

Figure 4.12: Illustration of some of the abstractions typically involved in making
a program operate.

To begin applying this principle, start with an overhead perspective of resources
and virtualizations involved in the targeted system, along with interdependen-

12As an exercise left to the reader, try and construct a similar, but more detailed model representative
of a complex execution setting such as a web browser complete with plugin systems, parsers for various
scripting languages and the myriad of markup languages needed, and assert which of these that are, in
fact, necessary and which can be omitted.

4.5. Moving Forward 61

cies. Then establish which of these are necessary. This is relative to the overall
stage of the system in question, ranging from in development (design, ...) to de-
ployed. In theory, this ought to be more beneficial the earlier in the process the
principle is actively applied, but chances are that other decisions, such as the
selection of supporting technologies and target environment, will override and
take precedence for political reasons, if nothing else. However, it is plausible
that the boundaries of the virtualizations employed in a solution will widen as
the system ages and new technologies are introduced and new layers are added
in an effort to retain compatibility and increase mobility. However, to do so risks
introducing redundancies that in time will become integral parts of the system
in question.

To illustrate this with a simple scenario, consider a situation where you have a
piece of software designed to execute inside a virtual machine, like the Java Vir-
tual Machine (JVM). The virtual machine environment is supposedly extensive
to the point that there are but a few conceivable functions that are not already
part of the rich API exposed to the virtual space, and that a desired benefit is
the compatibility between a variety of platforms. A managerial directive arrives
which dictates that the parts of the services that the software is instrumental
in providing are to move to an off-shore data-center, to cut costs like energy
consumption or system administration. Sometime after migration is completed,
the software starts misbehaving. As a quick fix, a snapshot of the original envi-
ronment is generated, transferred to the data-center and, to combat differences
in hardware configuration, executed inside another virtual machine. Quick fixes
quickly become permanent. Now, the actual target and the breadth of the system
extend way outside the initially intended scope.

A recent example in this regard (which also applies to the second principle, rein-
force borders) can be found in web-browser development, where the tendency is to
maintain multiple browsing processes (split across different graphical containers
like windows or tabs) within one logical operating system process. Due in part
to the complexity of the protocols and data formats involved, there are issues re-
lated to achieving a separation between these processes in any sense of the word,
as well as strong adverse consequences to security, stability and other aspects of
the system. The strategy then, is to take advantage of the process model of the
underlying operating system and map browsing processes to operating system
processes using some configurable demarcation (per site, per container) [20].

To summarize this principle as a set of imperatives:

• Virtualize only the resources that may explicitly benefit from virtualiza-
tion. The estimation of benefits should contain the overhead of not only
the use of said resources, but the added cost of runtime translation and
maintenance.

• Take full advantage of the capabilities of existing, current, virtualizations
before adding new layers.

62 Use and Misuse of Virtualization

• Dynamic, adaptable reconfigurable execution or management of a resource
should be a controlled exception, rather than the norm.

4.5.3 Principle Two, Reinforce Borders

The second principle connects to the previously covered notion of protocols
and conventions, essentially verifying that interactions intended to be protocols
have not degenerated into convention, and, at the same time, detecting and
isolating existing ones. The interfaces that exist between the virtual space and the
virtualization, as well as between the virtualization and its machine, essentially
form logical borders between subcomponents. At these borders, we can add
additional evaluation criteria that assert that the incoming / outgoing data
conform to any known, accepted patterns and discard or otherwise react to
non-conforming ones.

Looking at the C snippet in (Fig.4.13) as a explanatory aid for this principle and
some of its problems (it can be noted that while this is not especially helpful in
describing the protocol aspect), the interface of the function is fairly obvious,
provides a basic understanding of the existing C type model. For arguments
which fulfill the illustrated boundary conditions, the additional check does not
achieve anything useful during execution. However, had it not been there to stop
the flow of non-conforming data, some kind of disruption would have been likely
to follow. Yet, some other possible boundary conditions are still not considered
(does src converted fit into dst, do they point to properly allocated, accessible and
aligned memory addresses and so on). There are fiendishly many details to get
right even in a trivial case such as this one, and with a communication protocol
there is usually a time component involved as well. This is, however, somewhat
contradictory to the rule of thumb in Jon Postel’s well-known quote from RFC
791 (The Internet Protocol), ”In general, an implementation must be conservative in its
sending behavior, and liberal in its receiving behavior” [53], which, should everyone
adhere to it, would essentially provide bidirectionally enforced borders, although
only implicitly in one direction. Considering the wealth of internet protocol stack
implementations that are not conservative in their sending behavior and even
unstable in their receiving behavior, the long-term repercussions for lenience
towards non-conforming implementations or outright ambiguous specifications
are quite severe.

In any case, the solution is easy to suggest but hard to realize. There are many
suggestions on how to further validate the respective inputs and outputs in-
cluding model contracts, test-driven development, theorem solvers and other
techniques. Some of these operate from the perspective of a programmer actively
working on developing a system, having the tool chain essentially refuse to
output a binary that does not comply with validation requirements. The focus
here, however, is systemic and gives run-time little or no access in regards to
the artifacts used in developing the system. In addition to this, there are both
modern and legacy components that, in spite of efforts to the contrary, may for

4.5. Moving Forward 63

1 #define VALID(X) ((X) > 1 && (X) < 16)
2
3 int cconv(char* dst , int dtype , char* src , int stype){
4 if (!dst || !src || !(VALID(stype) && VALID(dtype))
5 return -1;
6 /* ... */
7 }

Figure 4.13: A small snippet from a text conversion routine.

some reason need to be integrated. Furthermore, there are mechanical anomalies
(bit-flips, faulty cables and in other ways decaying hardware) that still need
to be accounted for and dealt with to avoid propagating silent corruption and
similar problems that plague many systems [21] [22]. There is thus incentive to
reinforce borders bi-directionally both horizontally and vertically and there are
many techniques actively in use (e.g. canary values, data structure checksums,
address-space layout randomization, etc.) to safeguard against certain prob-
lems occurring after the fact, especially on the dynamic prevention of successful
exploitation of vulnerabilities of the buffer overflow type.

4.5.4 Principle Three, Act on Anomalies

With the first two principles, the aim was to establish a sort of foothold from
where we can further refine our understanding and control of the subject. There
is plenty of leeway in how those principles can be applied. From now on, we can
assume that there is some sort of demarcation in place and that it is possible to
roughly distinguish between normal information flows and anomalous13 ones.
The follow up then becomes what to do with the anomalous flows that have
been discovered, or, more specifically, which interventions that are reasonable to
implement?

One way to approach the situation is through the idea of limiting cascading faults.
Using the systemic perspective from Sect. 4.1, we can see that proper execution
is dependent on a series of tightly interlinked parts where the desired function
of one component to some extent depends on that of the others, and when com-
bined and executed it has non-linear properties due, in part, to feedback loops.
Furthermore, from the examples in Sect. 4.4 we find that somehow corrupted
or malign computations can pass through many such components undetected,
probably increasing the harm caused and making it difficult to determine the
underlying causes. To illustrate an approach that may be used to combat this
scenario, consider this set of imperative interventions:

13Note that error handling as part of a protocol (error return codes, named exceptions, ...) are not by
themselves anomalies, as a protocol dictates what is standard, normal and expected.

64 Use and Misuse of Virtualization

• fail early – Activate a fault trigger at the earliest possible stage and avoid
introducing context switches and other forms of preemption. Also prevent
further modification of shared and persistent state holders. Due to the
rapid speed at which these systems operate and change state, the window
of opportunity where valuable information for determining the underlying
cause of the anomaly can be detected is small.

• fail often – The fault trigger should, to as large an extent as possible, not
be dependent on external states or heuristics. Accessible and proximate
sources of disturbances that influence the path execution takes (such as the
seed of a pseudorandom number generator) should also be recovered and
accounted for. Ideally, all conditions are reproducible to the point that the
underlying cause can be triggered with as small a delay between repro-
ducing the conditions and reactivating the trigger as possible. However,
such an ideal requires that the virtualization ideal holds true for a certain
anomaly.

• fail hard – Finally, there should be a chain of command and responsibility as-
sociated with the fault trigger, meaning that the event is not simply tucked
away in an event log somewhere. Instead, data gathered should have a
clear recipient that has the ability and mandate to act upon such events.
This might be a sole administrator, a tiger team within the organization or
even another program, like an Intrusion Detection System (IDS).

This is indeed very similar to approaches found elsewhere, such as fail-fast [23].
Note that the recurring notion of a fault trigger does not necessarily have to be
something as crude as a program crash or a watchdog initiated reboot, even
though these are cases that provide strong data on the events occurring imme-
diately prior to an undesired event. Also note that the interventions outlined
above are intended as suggestions and examples of the principle as such, and
that the most suitable ones will vary with the system and context at hand.

4.5.5 Principle four, Implement Monitoring

The fourth and final principle concerns monitoring. Consider the following
scenario:

We have a background process (daemon) that enables some system maintenance
services. Some kind of software bug triggers a starvation situation, causing
the daemon to get stuck in an infinite loop on some evaluation criterion that
can never be fulfilled. This is a common enough problem where execution is
still performed but the overall computing cannot progress. Without extensively
examining the executing code (and even then there can be external state-holders
preventing the possibility of determining this algorithmically), the process ap-
pears – from a systems perspective – to be actively running, which it is. The

4.5. Moving Forward 65

consequence is that available resources will be eaten by the daemon (hence ’star-
vation’) and this process will continue until some external intervention breaks
the cycle. Fortunately, most operating systems provide the possibility to coarsely
monitor processes (ps, top, activity monitor, etc.) for reasons such as the one
described, allowing an operator to make informed decisions. Had this ability
been the excluded, the chances for early detection of such performance degrada-
tion would have been much smaller and the system may well drift into problems
with more severe consequences.

The idea is thus that with dynamic system behaviours follow the considerable
risk that previous perception can be invalidated and that this might go by unno-
ticed. Thus, to avoid the case where decisions and interventions are based on a
faulty premise, key state transitions have to be monitored. Unsurprisingly, the
level at which this is performed, or which variables that are used for monitoring,
is context sensitive and dependent on the system at hand. The important thing
is that decisions are based on the benefits (Sect. 4.3) that are desired in respect to
the related caveats.

This is not itself without challenges or drawbacks, and to address these (in
respect to an operator or other stakeholder) it is important to:

• Collate the variables in the form of representations (monitoring models)
that are accessible and comprehensible to the stakeholder.

• Ascertain that the information contained in the representations is suffi-
ciently detailed to empower the stakeholder.

• Establish which reactions that should follow (Reinforce principle three).

• Provide training tools and scenarios tailored to the model(s) and desired
reactions.

• Validate the monitoring against the system at hand.

• Keeping the monitoring in synch with changes to the overall system.

• If security is included among the benefits, the monitoring system must also
be included, as it operates from a privileged position and is thus a likely
target for attack.

5 Retooling Software Debugging

The layout of this chapter is as follows:

Context covers the perspective and background that served as motivation for
this study. Toolsuite then itemizes the composition and mechanics of the major
categories of tools typically used when debugging. Following that, the SiS (Soft-
ware intensive Systems) transition exemplifies the challenges involved, illustrates
the process of restructuring a debugging toolbox and discusses some important
barriers experienced when doing so. Lastly, the section Moving Forward covers a
few of the major recent developments in terms of debugging tools, the challenges
involved when using these tools and suggests how these can be modified or
complemented to improve the state of the art.

5.1 Context

Historically speaking, the tools for debugging used in any engineering endeavor
have appeared out of an interesting mixture of ingenuity and immediate need.
It is something of a good engineering trait to be able to improvise and adapt,
or create, tools able to deal with a situation where something did not go quite
as planned. Unsurprisingly, development and debugging have to some extent
co-evolved so that neither seems to really get ahead of the other. In this respect,
software is a bit odd in that the same sort of techniques and technology that are
used to craft software are also used to create debugging tools; software is used
as aid for the study of software.

Since software development is a systematic rather than a stochastic process, there
is also a strong methodological aspect present. Part of this aspect is that some
methods still in use are implicit and not yet formalized. Thus, a lot of work
has been done in terms of distilling implicit practices into formalized methods,
particularly in terms of developing, verifying and validating software in view
of it being considered as a product in itself. In this regard, the troubleshooting
aspect has tacitly been ignored in favor of efforts directed at improving testing,
with the perspective that the two are somehow related. This is an understandable
position if you agree with the notion that when a formal development process
is completely successful, the end-systems will be functional so that debugging
becomes, at worst, a minor inconvenience.

67

68 Retooling Software Debugging

When reviewing the suggestions on methods for debugging software directed
towards engineers [38, 45, 46], it should be noted that they range between playful
mind games such as puzzle solving and role-playing, all the way to hypothetic-
deductive reasoning. The common denominator is that they all rely on a hy-
pothesis, that is split between either a vague or intuitive guess or hunch, and a
hierarchical, binary quantifiable notion.

An example as to the latter can be found in [24], but this example also emphasizes
the problem in establishing formal debugging methods: to quote; ”Unlike testing,
debugging concerns not only the program specification and source code, but also – and
more essentially – the various causes of errors. The major subject of debugging is causal
reasoning within an integrated process of developing, selecting, verifying and modifying
hypothesizes about errors. Therefore, to establish a formal framework we need not only
theories on specification, semantics and behavior, but also theories on error analysis and
causal reasoning.”. However, reworking theoretical philosophy treatments on
causal reasoning [47, 48] into an applied debugging perspective, will probably
be an arduous task.

Our experiences in regards to the form of hypothesizes useful for debugging,
lean towards the more explorative and experiment-oriented. A suggested reason
for this, and thus an unverified hypothesis in itself, is based on when in the
development stages of a software that the developer needs to debug and that
there is some tipping point in favor of one over the other.

To elaborate: on the one side, there are developers actively working on some
future software-based product or service. These developers are strictly adhering
to some preset development method where there are many short cycles between
writing a portion of code, having it tested, observing that a test fails and adjusting
the corresponding portion of code until the test finally succeeds. On the other
side, there are developers working on tuning or otherwise improving some
software solution that is to some extent already up and running or even deployed.
These developers receive reports from various stakeholders on experienced
problems; reports that have been filtered through several layers of customer
support. In such a scenario, the software solution can be perceived as aging,
meaning that it has not been updated or changed to reflect other external changes
to components that the software either indirectly (operating system, hardware
configuration) or directly (shared libraries) depends on.

Even though the problems experienced in early development may, of course,
still occur in the later, more mature stages – assuming that the testing and
verification efforts have not been sufficiently rigorous and thorough – there
is still a large series of environmental factors in play. Such factors include
be variations in the executing hardware (partial damages from overheating or
other physical disturbances), cascade- effects from other third-party software that
modifies shared resources in unexpected ways, and even undesired interventions
(cracking, viruses, rootkits, etc.). All these factors can affect the end behavior that
is reported and thus needs to be taken into account when investigating reports
and crashes.

5.2. Toolsuite 69

Thus, it is not unreasonable to think that developers who primarily work with
software in the earlier phases drift towards a more strict view of hypothesizes in
regards to debugging, particularly if they possess a very intimate understanding
of how things fit together. Meanwhile, those involved in the latter stages may
instead drift towards a more intuitive perspective. Subsequently, the latter cate-
gory should also be more prone to rely on an assortment of smaller experiments
to extract relevant feedback from the stakeholder input.

The argumentation used in the remainder of this chapter is based on the latter
view.

5.2 Toolsuite

In the previous section, it was assumed that the interplay and connection be-
tween tools, method and the problem at hand is central, and that our approach to
debugging is systemic, meaning that it focuses on a broader range of interaction
between large systems or components, rather than tied down to a smaller pro-
gram or algorithm implementation. With this assumption as the starting point,
there is sufficient reason to make a quick re-evaluation of the tools (or rather,
categories of tools) that are likely to be part of the debugging toolbox (which, to
a large degree, can be distilled from the features present in modern integrated
development environments).

5.2.1 Symbolic Debugger

The Symbolic or source-level debugging (usually referred to as simply ’the de-
bugger’) is a term that essentially describes the way an analyst1 is interacting
with the tool. Source-level or symbolic means that it is the source-code that
the gathered measurements and specified interventions are referenced through.
The key features involved are that of data control and execution-flow control,
both dealing with what is to be measured or manipulated and at what point (condi-
tions) during execution that these actions should occur. Both interventions and
measurements are regulated using breakpoints.

Breakpoints can, from an abstract perspective, be any controllable interrupt (or
trap) during code execution that the debugger is able to introduce (and remove).
When an interrupt is triggered, the control is diverted to a handler routine
inside the debugger. This may involve support of the underlying machine or
environment through interfaces such as ptrace or JTAG, but can also be done

1As an effort to avoid language such as ’the debugger debugged the bug using a debugger’, the
term ’analyst’ is used here to refer to some person investigating an issue, and ’anomaly’ rather than
’bug’ to emphasize the deviation between intended or expected behavior and the behavior experienced
or measured, that such a deviation is not necessarily malign, and that it may well be subject for
interpretation and discussion.

70 Retooling Software Debugging

in a more direct fashion by simply manipulating the stored program, target, in
memory. A direct consequence of such unexpected interrupts is that they can
invalidate many assumptions made during compilation in regards to instruction
scheduling, branch prediction and so on, implying that these notably affect the
performance of the target even when they are not triggered. Thus, the symbolic
debugger is not a tool that is suitable for the direct investigation of performance
degradation, and which should therefore instead be used for protocol mismatches,
corrupted data and terminal states.

This is, undoubtedly, a very brief and shallow treatment of the symbolic debugger
as a principal debugging aid. Yet, there are few alternatives to examining the
source code of open debuggers such as GDB [70], perhaps with [71] and [49] as
references or starting points. However, the above is sufficient background to
enumerate some of the key issues in view of the upcoming discussion in Sec. 5.3
and Sec. 5.4:

• There is a large disparity between the source-code view of the developer,
the source-code view of the compiler (preprocessor macro-expansion) and
the lower-level code, but it is at the low-level that execution can be instru-
mented. However, there is no guaranteed ratio between the two, it can
essentially be many to many.

• The presence and ability of a symbolic debugger can be both detected,
circumvented (anti-debugging [25]), misdirected ([26]) and is further hin-
dered by common security measures such as ASLR [27], DEP/WX [66],
etc.

• Many low-level dynamic states needs to be tracked in order to retain truth-
fulness (relocations, trampolines, variable-instruction length decoding,
state sensitive instruction sets, etc.), which is an important trait of any
debugging tool [28].

• The debugger kernel has to both track, and be aware, of threading sched-
ulers and other concurrency techniques.

• The source-code level of representation requires a special build that retains
private symbols and, preferably, excludes most or all optimizations.

5.2.2 Tracer

If the symbolic debugger was a narrow category, the category of tracers is far
wider. The term tracer refers to all tools that provide some specific traces of
execution of a program that are not strictly part of its intended input / output2.

2Finding anomalies in input/output or the lack of output corresponding to some input, is how a
person would note that something is wrong in the first place, rather than through the trace evidence
that can be used to explain why the observed anomaly occurred.

5.2. Toolsuite 71

Subsequently, there is a rich variety in the number of information sources for
tracing, e.g. system logs, process signals etc. These also include the venerable
”printf” debug output left behind by careless developers. Furthermore, most
symbolic debuggers have some trace functionality added through the call trace,
also called stack trace. This means that it will try and extract the sequence of
function calls or jumps that led to a triggered breakpoint. This is achieved either
by analyzing data on the stack, with varying degrees of difficulty depending on
the architecture and on how optimized the code is, or by maintaining a separate
stack or log.

Such corner cases aside, tracers are tools with a generic data gathering approach
that can take advantage of a wide range of information sources that are not
exclusive to dedicated debugging interfaces and other forms of specialized
support. In addition, they are not as strictly bound to a single program as
symbolic debuggers are.

Some key-pointers in relation to tracing tools:

• The connection between trace samples and the source of the sample is not
always obvious or tracked. Thus, the data need to be tagged with some
reference in regards to its source, covering both where (instruction, function,
program, etc.) and when (timestamp) the sample was gathered.

• The imposed overhead varies a lot with the quantity of data and the
frequency of samples together with the properties of the interface and the
resource that the data comes from.

• There is no clear or default reference model (e.g. source-code) to appropri-
ately compare and study.

• As tracing tools are quite easy to develop, you can quickly end up with a
large number of unnecessarily specialized tracers, unless the tool-chain is
heavily moderated.

5.2.3 Profiler

The profiler as a generic category covers performance measurements, but can be
viewed as a distinct form of a tracer3 that specializes in performance degradation
problems. The implicit assumption is that the performance degradation is linked
to some subsystem where the most execution time is being spent, which is
not always the case with, for instance, resource-starvation linked performance
degradation.

These measurements can be implemented using two trace sources or a single
datasource, a situation which is here referred to as event-driven or sampling-based.

3Even though it can be integrated as a part of a specialized build of the software.]

72 Retooling Software Debugging

With event-driven tracing, there is some sort of reference clock (to establish time
or cycles that elapse) and two trace points (entry and exit), such as the function
prologue and epilogue in many low-level calling conventions. With sample-
based tracing, some data source is sampled at a certain rate, and changes (or
the lack of changes) to this data source are recorded. An obvious such source,
from a low level perspective (particularly in cases where the code distribution in
memory is well-known and static), would be the instruction pointer/program
counter of a CPU. This even though this may require specialized hardware, but
the idea translates to virtual machines as well.
The shared aspect of these tools, however, (perhaps more so in the event-driven
case) is that the refined use relies heavily on the analyst’s skills when it comes to
statistical data analysis and modeling.
Here follows some key-pointers about profilers (and subsequently, about the use
of these tools for debugging performance degradation):

• Even though the needed precision may vary, the case can, at times, be
that the degraded performance is not directly linked to just processing
power, but rather to the relationship between different resource types
(communication, processing and storage with their respective latencies).

• When the environment is heterogeneous rather than uniform, it cannot
safely be assumed that performance measurements generalize between
different instances of the same system.

• Some scenarios (specialized builds, event-driven tracers) with adaptive
algorithms that alter behavior based on estimated processing power (com-
mon in audio and video applications), are particularly prone to suffer
observer effect from profilers, and the evaluation criteria used by the algo-
rithm implementation may need to be controlled and manipulated.

5.2.4 Crash-Dump Analyzer

The last tool category to be covered in this chapter is the crash dump (post-
mortem) analyzer on which two perspectives are presented. The first perspective
is that crash dump analysis is a specialized part of the preexisting functionality
of the symbolic debugger, with the difference being that the option to continue
execution is not especially useful. The debugger merely provides the analyst
with an interactive interface from which to query various states pertaining to a
crash (or breakpoint). The other perspective is that a crash dump (snapshot) of
processor states can be combined with more domain and application- specific
knowledge and quickly generates reports and other documents to a wide assort-
ment of specialists and can thus serve as an important glue between actors in
a larger development effort or organization. Both of these are relevant to the
extent that they cover a broad and detailed description of the states and data of
a system or subsystem that, if the underlying cause is proximate in time to the

5.3. SiS Transition 73

trigger that generated the snapshot or crash, may encompass sufficient data for
successful troubleshooting.

In addition, crash dump analysis, as both a manual process and in the form
of automated tools, finds its relevance when the target instance is not immedi-
ately accessible at the time it presented some anomalous behavior. This further
assumes that these snapshots are both generated and collected. This, in turn,
implies that a larger support infrastructure is needed, one that manages all the
aspects of collaborating with different stakeholders, and thus ascertains that
relevant and intact snapshots are obtained.

Some concluding points in regards to crash dump analyzers:

• The success of analysis is largely dependent on how intact the underlying
data is, meaning that data corruption that specifically affects control struc-
tures (metadata) and other key areas rapidly reduces the chances that a
snapshot will be useful.

• The success of analysis is also largely dependent on how encompassing
the data is. Some state holders external to the subsystem in question may
not be fully retrievable at the point when the snapshot is being generated,
such as OS file, socket and pipe descriptors.

• Crash dump analysis is in many respects similar to computer forensics.
Thus, new developments and techniques that benefit the one may well
apply to the other.

• A considerable challenge is to gather only relevant data (both cases) and
present only that which is necessary (latter case) for each group of stake-
holders, using the most fitting native and non-native representations.

• All data present were probably not updated in the same instant. Thus,
there is ample room to extract temporal, and at times causal, links between
data (apart from generating call traces).

5.3 SiS Transition

Software has undoubtedly gone through a series of daunting changes throughout
the years, and there is no apparent end in sight. Among all these smaller shifts,
some have produced notable consequences for debugging and need to be empha-
sized, as they concern interpreters, dynamic linking and dynamic recompilation.
The common denominator is the keyword dynamic in the sense that key details of
the current composition of a program is only ever known and accessible during
execution.

The direct consequence of the dynamic side to computing is that it dissolves the
notion of software as bounded computations with a strict view of program input

74 Retooling Software Debugging

as being only data to process. Furthermore, computations can be gradually spe-
cialized to suit the execution and input patterns unique to one specific instance
of a software. In this way, the software makes the best use of current run-time
conditions, which subsequently has led to programs that are highly dynamic.

In addition, the computing hardware is to a large extent more heterogeneous than
a couple of years back. Partially through the main-stream transition to hybrid
32/64- bit processors, offloading more generic computing tasks to a Graphics
Processing Unit (GPU) and other specialized DSPs and because of additional
CPU architectures introduced to balance computing power with energy efficiency,
e.g. x86/ARM hybrids, it is now reasonable to assume that some vendors and
services will rely on code being dynamically translated from one architecture
to the other and back, depending on current running conditions. In fact, this
has already occurred to some extent (although not transparently in the same
execution run) in Apple’s transition from PowerPC to X86 in the Rosetta project
[29].

Thus, the term software-intensive is used to emphasize that it is this heteroge-
neous, open, networked and dynamic mix that is in effect, and that the activity of
debugging a program is performed in the same way as before. For a large group
of developers, this change can be subtle yet dramatic in the sense that actively
maintaining the implementation of some complex algorithms is not the direct
focus or task4 anymore. Instead, the activity focuses on piecing together a larger
processing system from a wide array of frameworks and third party components.
This is similarly dramatic for those that supply developers with these platforms
and frameworks.

5.3.1 The Feature Phone, the Smart Phone and the Wardrobe

Current generation smart phones are interesting from a debugging perspective
in that they quite cleanly illustrate an embedded to software-intensive shift
during a compact time-frame. One the one hand, there are older cellphones
(”feature phones”) as embedded, albeit quite complicated, kinds of systems that
have advanced protocols interfacing the large and legacy-rich phone networks,
but that still perform a clear and distinct function (primarily enabling real-time
mobile voice communication between users). On the other hand, there are smart
phones in the sense of semi-open5 generic mobile computing platforms where
the distinguishing features from other devices such as tablets or netbooks are
related to form factor, user input methods and other superficial details, rather
than the computing as such.

4These implementations come as neat third party libraries. Thus, the immediate challenges instead
concern interfaces and data formatting.

5Semi-open because even though there is more openness to third party developers, these devices
are still subject to varying degrees of vendor lock-in along with type approval and other certification
processes.

5.3. SiS Transition 75

Starting with the feature phone, as representative of a closed but large (millions
rather than thousands of lines of source code) monolithic, embedded system.
They are closed in the sense that there is limited, regulated or no access for run-
ning third party, foreign, code on the device. In addition, third party code, when
allowed, is limited to a reduced feature set and only portable across a small span
of devices. The resources that are available to developers are similarly limited
and in addition to some real-time requirements on behalf of the communication
protocols, optimizations need to consider not processing power as such but
rather energy consumption. Furthermore, the memory space of these phones is
not guaranteed to be virtualized through paging and elaborate Memory Man-
agement Units (MMUs) and therefore lack normal process separation. A wild
pointer could, for instance, corrupt long chains of code and data for other parts of
the system and tight packing of the memory space makes this statistically more
likely than in a system where each computing task has a distinct process with a
dedicated virtual 32/64-bit memory space. Thus, the execution environment is
highly static to the degree that it is trivial to establish a memory map of functions
and resources, simply from the output of the static linking stage of a build system.
These properties have interesting repercussions for the kinds of anomalies expe-
rienced and how long and far reaching different kinds of errors can cascade into
each other before being detected, often producing severe problems (permanent
malfunction that results in a returned device). Furthermore, the high number
(millions) of instances of the same system means that problems with very low
repeatability rates will need to be investigated.

The smart phone transition involved large changes of the aforementioned points.
To begin with, the hardware platform is many times more powerful and, in
terms of ability, more similar to that of laptops one or two generations back.
The software platforms are both open and known (parts of Android [72] as
well as XNU/Darwin are subject to various open source licensing terms) and
developers are openly encouraged to develop and release their software on
respective platforms as a means to increase market shares. Subsequently, the
end-user able to fine-tune and customize the contents to their hearts’ desire.
However, these changes and the following economic incentive open up for other,
darker areas, such as piracy and various forms of privacy invasions. The industry
response from affected or concerned developers is, unsurprisingly, to try and
protect the software against such piracy through the usual means, i.e. obfuscation
and DRM [73]. Such measures, however, further complicates debugging.

Now, the crucial aspect is that the developers interact through hierarchies of
platforms, some without clear service-level agreements. Thus, it is rather a
pre-branded and themed access to these platforms that is being mediated and
ultimately sold. The subsequent perceived openness is thus based on how
much of the theme that some stakeholder is able to configure. Even though the
developers behind individual brands have little influence in configuration of
any specific instance, it is ultimately part of their responsibility to optimize the
end-user experience.

76 Retooling Software Debugging

5.3.2 Remarks

The consequences of the SiS transition in respect to debugging is brutal since this
transition advocates a setting in which fundamental mechanisms are being pur-
posely counteracted, giving the analyst limited access and insight into the inner
workings of both modern and legacy components. The immediate consequence
is that the parts that an analyst is capable of instrumenting are limited by both
technical, political and judicial barriers.

5.4 Moving Forward

The situation is thus that debugging efforts for central, and to some extent
critical, systems are made more challenging and will put increased pressure on
analysts that are already facing tough challenges. Thus, improvements to two
key categories, tracers and experiment environments, are suggested as a means
for advancing the interplay between development, maintenance and tools. For a
discussion on experiment environments, please refer to Chapter. 6.

5.4.1 Systemic Tracing

A lot of development in regards to debugging tools revolves around optimizing
the implementation of the respective roles (particularly for symbolic debuggers)
towards the goals of minimizing overhead and compensating for a growing dis-
parity between source-code descriptions and the executing code that is actually
instrumented. The ideal is that the techniques involved should work equally
well for a standard build (merely complemented with a database of symbols),
eliminating the need for special debug builds.

A major development in terms of tracing is the expansion of (virtual-) machine
support in the direction of tracing frameworks [30]. Recent works that does this
include dtrace [31], systemtap [74], PinOS [32], and Lttng [33]. The basic idea is
that the code is prepared with instrumentation points. These can be implemented
through, for instance, No OPeration (NOP) instructions, which should preferably
have been added already during compilation but which may have, of course,
been added dynamically. During regular execution, these instructions are exe-
cuted. By definition, they impose no real change in system or processor state
and their only real overhead is the trivial cost of a few more bytes of code. When
an instrumentation point is later activated, the instruction is changed to a jump to
some stub code controlled by the tracing framework. Note that at this stage, the
change is very similar to how software breakpoints in a regular debugger behaves.
The key difference lies in what happens after execution has been hijacked.

With the tracing framework, the analyst specifies which tracepoints he or she
wants activated, using domain specific language native to the framework. This

5.4. Moving Forward 77

specification also covers which tracepoint-associated data that should be col-
lected, and how this data should be processed and presented. Thus, among
the key differences between the frameworks is the interface specifications for
data adjacent to the instrumentation point, and how the gathered information is
exported.

A major problem that persists from both tracers and the other tool categories
is how the gathered data are represented, particularly when source-code and
debug-builds are not available or sufficient. Even though there are polished user
interfaces available, such as Apple instruments [75] and the lttng’s viewer, the
actual presentation consists of fairly simple 2D graphs and histograms, similar
to those used by many profilers.

5.4.2 Trace-probe Networks

The suggested enhancement to tracing frameworks, partly concerns loosening
the grip and focus on the specifics of how each individual trace probe is managed.
This means that they do not all need to operate on the same mechanisms but
should instead be configurable to a larger degree. If such restrictions are dropped,
it would be easier to apply them to a more heterogeneous environment where
strict control is not always possible. This would also make it unnecessary to
rely on being able to modify the code of the system or subsystem that we are
interested in observing.

Intercept

Sample

Emit

Forward

Control

intrusion

Figure 5.1: Key actions for a trace probe.

When working towards such goals, we begin by outlining a more abstract probe,
illustrated in Fig.5.1, and breaking it down into a few key functions.

The first challenge for a tracing probe is interception, which concerns the issue of
the extent of control needed, in respect to the extent of control that is necessary,
in order to gather measurements. If it is dangerous or otherwise unwise to

78 Retooling Software Debugging

have a probe alter the space in any way, this function may have to be reduced
to a statistical approach and external sampling. When control has somehow
been intercepted, the target has irrevocably been altered, which is illustrated by
intrusion. It should always be a goal to keep this as low as possible. Intrusion
can be measured in a sense by the time (or number of state changes) that passes
from the point of interception to when control has been returned to the target.
Interception as such can be implemented in numerous ways, and it is crucial to
select the option that is believed to, again, impose the least intrusion. Preexisting
debugging interfaces can, of course, still be used to obtain execution, but there
are other tools that can also do the job, tools such as the dynamic linker through
facilities such as LD PRELOAD in the GNU LD linker (and others). Other viable
options are more exotic techniques such as those described in [76], as well as
the interface for process or raw memory access, specialized drivers, loadable
plugins, JIT facilities of virtual machines [34], exploiting security holes that allow
for remote code injection, etc.

After control has been intercepted, it is possible to sample, meaning to extract data
from the subject. Sampling is closely tied to the chosen interception mechanism
because it can provide reasonable assumptions as to the type, size and location of
adjacent data. As soon as a sample has been generated, the probe emits the sample
and forwards control back to the target. The task of emitting a sample involves
tagging (time-stamps, sequence numbers, etc.) and packaging (compression,
encryption).

Note that a key-decision in the design and development of each probe, is to
establish which functions that should execute as part of the target, and which
should be made external. The external part, is referred to as the control-interface
(labeled as control in the figure) and acts as an mediator between the target and
the analyst. This part is responsible for all administrative tasks such as attaching
and detaching one or more probes (performing the initial interception) to one or
several targets.

Configure Deploy

ActivateTeardown

Gather

Represent

Figure 5.2: Coordinating a network of trace probes.

In order to get such a framework to operate in a more advanced and heteroge-
neous environment, we need an overarching structure that enables coordination,
as illustrated in Fig. 5.2. This can be implemented recursively by establishing
hierarchies of controller-interfaces. Similarly, to the workings of each probe,

5.4. Moving Forward 79

there are a few key functions that cycle, and they can be divided into an outer
ring (configure, deploy, activate, teardown) and an inner ring (represent, gather).

The first function, configure, works as an interactive starting point in that the
analyst specifies which configuration of sensors that he or she wants. Such a
configuration entails the interception mechanism and its parameters, the direct
address of the control-interface and the relative address from there to the target.
In this way, this step is comparable to the configuration mentioned earlier in this
section. At this point, it is also possible to perform both a sanity check (are all the
desired targets reachable, can each control-interface inject the probes in question,
etc.), and a test-run to make sure that all probes can perform an intercept to
detach sequence. When a workable configuration has been determined, it can be
propagated to the control-interfaces in question, i.e. deploy.

The inner ring can be activated as soon as samples from trace probes are starting
to gather. In the inner ring, there are two key actions that can be alternated inter-
actively. The first one, gather, concerns making an informed selection from the
data that have been gathered thus far. The second action, represent, is necessary in
order to make the selected data intelligible by providing visual models to which
the data can be attached. These representations can be both native (using the
symbols and relations from the running configuration) but also non-native with
help from a wide range of visualization techniques such as graphs, diagrams,
bitmaps and histograms, etc. These representations can also be recorded and
distilled into reports akin to the ones previously discussed in the section dealing
with crash dump analysis.

The last stage in the outer ring (which subsequently will interrupt the flow of the
inner ring) is tear down, meaning that all control-interfaces deactivate, disconnect
or otherwise disables the probes that they govern, so that the flow of samples
is terminated. This action can be followed by a new iteration, i.e. refining the
previous configuration based on experiences gained from the previous session.

The fact of the matter is that this idea has already been realized in a number
of other context. Network communication for many of the communication
protocols widely used when it comes to routers and packet filters (firewalls), has
dealt with dynamic systemic debugging challenges for a long time, particularly
from a performance perspective. In addition to this, there are many refined
monitoring tools that make use of similar principles to the solution that was just
discussed. HP’s OpenView is one example of a long standing such tool, but there
are interesting free-tools as well, such as smokeping [77]. Surveillance systems
for critical infrastructures such as the power grid have also had a similar designs
for a long time, even if these designs have been static.

Other real-world examples of distributed probe networks are the command and
control structures used by botnets6. A control structure that is powerful enough
to invade the privacy of millions of people and capable of directing large-scale

6Large networks of hijacked personal computers used for gathering information (espionage),
performing distributed attacks, send spam, etc.

80 Retooling Software Debugging

attacks on the information infrastructure of large corporations surely has aspects
that could be leveraged for more productive uses, like debugging.

The next step, when the immediate technical challenges are dealt with, is to alter
the probes so that they can also perform interventions (trace-actor networks),
thus bridging a key feature of the symbolic debugger. By combining trace-
actor networks and refined experiments, we might finally get a setting where
it is possible to experimentally develop and improve frameworks for causal
reasoning in software error analysis.

5.5 Conclusions

To briefly summarize the tools and their respective drawbacks:

With the symbolic debugger, the level of control and intervention required to
support breakpoints and source-level symbolic debugging will be increasingly
difficult to achieve for some stakeholders. Furthermore, the interfaces used to
achieve such control are quite easy to detect from the targeted code, and many
legitimate (copy and integrity-protection schemes and other forms of surrepti-
tious software) or more dubious (worms, viruses) programs take advantage of
this fact to alter their behavior in, for the analyst, counter-productive ways.

With tracers the central issue is the model to which gathered measurements
are attached. Even though this is a challenge that is shared with post-mortem
analyzers to some degree, a key difference is in the source of the measurements
and the relative timing. In the post-mortem case, the concern is how much data
that can be extracted and made useful from an instance that has come to a very
distinct halt. In the case of tracing, you instead have a series of tools that provides
small samples of specific key data, which has often been generated throughout
the life-span of the program in question. The most primitive of these are the
ones that are integrated in the subject, e.g. printf statements or calls to system log
facilities.

For post-mortem analyzers, the relevance of the accessible information can be
very high when the effect studied falls within a proximate onset, proximate cause
kind of scenario. However, relevance quickly shrinks with time as state holders
necessary to perform the analysis gets overwritten at a rapid rate. Thus, post-
mortem analysis depends on how much of the type and location of specific data
on how can be determined in advance, but also that the underlying causes trigger
a snapshot for analysis proximate to when the effect in question occurred.

Furthermore, it is worth noting that not only is it important to have intimate
knowledge about the mechanisms and limitations of the individual tools, it is
equally essential to be able to coordinate these into a larger chain that covers the
entire spectrum. Late stages of debugging is still likely to be needed for a long
time, so it is a good idea to prepare for this in advance by abstaining from solutions
that counteract the aforementioned tools and methods (prebugging).

5.6. Errata 81

The systemic shift illustrated in Sec. 5.3 is not binary in the sense that more
traditional debugging (whatever that is) somehow becomes extinct. Instead, the
scope of the overarching task is widened. With this follows that the challenge
of analyzing an anomaly also demands, not only the perspective of the feature-
phone (that is still relevant in the kernel-space) but also a profound knowledge
in reverse engineering, de-obfuscation and similar techniques, along with deep
rooted understanding of the interplay between debugging and security and
DRM related protections, an understanding that also includes cryptography
engineering.

Thus, the grander challenge ahead is not only to fashion a well-coordinated set
of modern tools and a representative experiment environment where these tools
can be reliably used, but also to teach and train debugging (or try and integrate
such training in other teaching endeavors) in order produce a greater number of
analysts skilled enough to tackle the challenge.

5.6 Errata

The following alterations have been made during the preparation of this thesis:

• The section on Experiment Environments was replaced with a reference to
Chapter 6.

6 Experimenting with Infrastructures

The layout of this chapter is as follows:

In Background we provide problem descriptions, background and history relevant
to this work, combined with a brief summary of previous efforts. Thereafter,
Experimenting with Power grids details the design of the power grid laboratory
environment and some of the challenges involved when experimenting within
that particular domain. This is followed by a corresponding section called Experi-
menting with ICT that describes our general approach to creating robust software
environments supporting controlled experimentations. The main section, Ex-
perimenting with Power grids and ICT, combines these two environments into a
unified experiment environment where we can study the interfacing between
different critical infrastructures. In challenges we briefly describe some issues,
both open and closed, that appeared while establishing this environment. Finally,
in opportunities we elaborate on some of the possibilities that this particular setup
provides.

6.1 Background

The need for strong experimentation, verification and validation efforts able to
transcend traditional infrastructural and scientific borders is great. If we are
ever to successfully restructure and improve present critical infrastructures to
fit and surpass current and upcoming challenges, the settings that enable such
efforts will need to undergo a similar enchantment, both in a macroscopic and a
microscopic sense. With a practical focus in this regard, this chapter looks at the
interfacing between infrastructures at two similar, but distinct, levels. The first level
concerns the interfacing between power grids and ICT, and the other regards the
interfacing between the experiment environments of these infrastructures. The
underlying motivation is partly fueled by the european FP-6 project Integrated
ICT-platform based Distributed Control in Electricity Grids (INTEGRAL) [78]
and the (SEESGEN-ICT) thematic network [79]. The INTEGRAL case actually
covers the integration and interfacing of three different critical infrastructures,
i.e. the electric grid including renewables, a customer-oriented business process
infrastructure and a SCADA – ICT infrastructure. The SCADA – ICT case is
here of particular interest as we discuss ways of improving resilience through the
implementation of self-healing mechanisms as a response to some harmful or even

83

84 Experimenting with Infrastructures

catastrophic event. This is especially relevant because of the inherent coupling
between the SCADA and the grid – and because any event affecting the grid
in such a way that some form of remedial action is needed, may also adversely
affect the ICT support needed to perform such actions.
When we cover the design of an experiment environment for a microgrid–ICT
setting and a different one for an ICT–ICT setting, there is a bias towards the ICT–
ICT problem since in this context, ICT and its actual role is the least understood,
but also because of the recursion involved, i.e. the need for ICT as a means
for observing and intervening with ICT. In terms of related work or other
approaches, the environment presented in Sect. 6.3 has a similar idea and similar
goals in terms of overall architecture as the NSF GENI [80] efforts (Fig. 6.1).
A contrasting frame of reference between the work in this thesis and in GENI
may thus be found through planetlab [35], but this mainly concerns scale and
application domain specificity.

10 Rune Gustavsson and Björn St̊ahl

!"#$%&'%
()*+,"-+$"&,#

!"#$%&'%
.**)/*+$/# 0&1"23

4/5/)+$"&,

6/#/+)27%
()*+,"-+$"&,

!"#"$%&'"%(
)*+'(,--.#

8)9#$
:,$/)'+2/

/."$%*01'-2#"

(;<

</+#9)/
=/,$# (;<

.**)/*+$/%
>&,$)&1

>&=?&,/,$#

</+#9)/
=/,$# (;<

.**)/*+$/%
>&,$)&1

>&=?&,/,$#

:,$/),/$

(?$@",
A#/)

311%"1$+"(3 311%"1$+"(4

5"$
#2%"

6"0
+(7.$

0"

/-0+%-.(7
.$0"

8$+$(7.$0"

Fig. 5 Architecture of the experimental NSF GENI platform

4 Configurable Experiments

The following experimental environment, based on EXP-II, is an evolution
of the experimental environment of Fig. 4. The main features of our new
environment under development

• Support for environment manipulation during experiments, e.g., fault in-
jections.

• Virtualization at interaction points at borders.
• Extensions of basic services of EXP-I across platforms and networks.
• Support for experiments on instrumentation and measurements (Network

of software probes).
• Support for feedback, calibration and debugging.
• Support for configuration of experimental environments. Programmable

nodes and connectivity models.

!"#$%%&
'()*+(,,-+

.(/-

.(/-
.(/-

!"#$%%&
'()*+(,,-+

.(/-.(/-

.(/-

0#.

!1*-+)2,&.-*3(+4

5(62,&-17-+89-)*&-):8+()9-)*

5(62,&-17-+89-)*&-):8+()9-)*

;%<*+8=>*-/&-17-+89-)*&-):8+()9-)*

Fig. 6 EXP-II based configurable environment supporting programmable systems
among the lines of NSF GENI efforts(Fig. 5)

Figure 6.1: NSF GENI Architecture.

6.2 Experimenting with Power Grids

This section describes the setup behind an experimental environment for, amongst
other things, self-healing microgrids as per the description in the previous sec-
tion. This setup serves as a baseline and fundamental environment that the
other sections of this paper will expand upon. It covers three distinct parts: The
physical distribution network, the agent logic and sensoring equipment that
enable self-healing, and finally the SCADA system itself.
The analog micro distribution network, illustrated in Fig. 6.2, was sized by
aggregating some electrical nodes of a real distribution network having a of

6.2. Experimenting with Power Grids 85

Figure 6.2: A model of the microgrid.

30 MVolt Ampere (VA) rated power at 20 kV. In order to best represent the
behaviour of a real network for many RTUs, and satisfy budgetary restraints,
the network of a test bench of 30kVA, 0.4kV was adopted. The scale reduction
of the microgrid components was carried out through different ratios (power,
inertia and voltage) to assure that the system was similar to the real system in
terms of the internal static and dynamic behaviours of the network, including
aggregated loads, network components (on-load tap changers for instance) and
Distributed Energy Resources (DER)/Renewable Energy Sources (RES). A strong
requirement is that the performance of the control systems must be unchanged
in comparison with the real system. This network has 14 nodes, 17 lines, 10 loads
and 6 RES/DER, divided into several areas which represent different network
characteristics. On top of this network, there is a considerable supporting ICT
infrastructure illustrated in the overview in Fig. 6.3.

A fault location algorithm had previously been developed using MATLAB,
and, subsequently, the governing agent was also built using a combination of
MATLAB [81] and MATLAB (OPC) toolbox [82]. The OPC Data Access standard
over Ethernet provides for a common protocol for communication between the
necessary OPC server associated with RTUs (which use TCP [54]/ (Modbus)
[55]) and between the SCADA control center and the OPC client (MATLAB OPC
Toolbox).

Communicating RTUs such as the Fault-Recorders (FRs) emulators (developed

86 Experimenting with Infrastructures

within LABVIEW [83]) as well as the Fault Passage Indicators (FPIs)1 that are
directly connected to computers that are then further interconnected across
several local-area networks by the application level communication supplied
by the OPC client/server solution. Finally, the advanced control and batch
execution used to accomplish the self-healing functionalities can be carried
out either directly by the local agents or indirectly by commands issued by
a Distributed System/Service Operator (DSO), that is empowered from the
information supplied by the agents.

The composition of the OPC real-time communication system for the INTEGRAL
demonstrator is shown in Fig. 6.3 and the computation that regulates the system
comes from the OPC Client Toolbox and the MATLAB local agent with its
embedded fault location algorithm. In terms of data acquisition, numerous
current and voltage sensors have been implemented. The dynamic data on
distribution network behavior gathered from these sensors are continuously
exchanged with the Intelligent Electronic Devices (IEDs), here limited to just
the Flair 200Cs and LABVIEW Fault Recorders. These are dedicated to remote
monitoring of middle to low voltage substations. When the passage of a fault is
detected, the current and voltage data are recorded in real time and transmitted
to the MATLAB agents via the OPC server2. The data exchange is then performed
between the OPC server and the MATLAB OPC client toolbox. Afterwards, the
exact position of the faulty segment will be determined by the fault location
algorithm. The computed action, i.e. which circuit breakers or switches that are
to be opened or closed in order to restore as much load as quickly as possible
after the fault has been identified, is then relayed from MATLAB to the protection
and automated devices in the distribution network via the SCADA system.

6.2.1 Communication between IEDs and SCADA Software

In order to supervise, control and communicate with each and every automatic
device and software, the supervisory software PCVue [84] is used3, allowing
for the support of a very wide range of industrial SCADA protocols. The com-
munication between the supervisor and the process equipment, such as the
Programmable Logic Controllers (PLCs), is handled by a component called the
Supervisor Communication Manager. The communication technologies involved
include OPC, the native driver equipment protocol, DDE [56], etc. In the self-
healing demonstration, the OPC technology is used to communicate between
supervisor and local intelligent agent, while the native driver equipment protocol
is used to link the industrial PLCs.

1Flair 200C, fault passage indicators furnished by Schneider Electric Telemecanique.
2For this purpose, a Schneider Electric OPC server product called OPC Factory Server (OFS) is

used.
3PcVue is a SCADA solution for multi-station supervision and control, developed based on the con-

siderable industrial automation sector of the ARC Informatique Company, and as such is representative
of current state-of-the art in SCADA.

6.3. Experimenting with ICT 87

Recorder Indicators

10 FLAIR 200C 3 enregistreurs

Server OFS

Agent 1 +
server OPC

SCADA
 Server PcVue1
Server OPC

Automate
reconfiguration

Agent 2 +
server OPC

Switch 24 ports

Controller Node 2 (zone2) Node 3 (zone3) Node 1 (zone1)

Client PcVue
POG

Automate
Zone 1

SCADA
 Server PcVue2
Server OPC

Automate
Zone 2 Automate

Zone 3

PC
Configuration

API

Figure 6.3: Early overview of the ICT solution. Note that parts of the base ICT
layer are not covered by corresponding monitoring nodes.

The equipment devices are labeled nodes of a particular network. The messages
that pass between the supervisor and the process equipment are called frames.
The mechanisms and boundaries which allow the supervisor to interact with the
MATLAB Intelligent Agent and the industrial PLCs are the following;

• 16 simultaneous communication channels, each with their own protocol.

• The refresh-rate is fixed to the rate specified by the frame-scan rate.

• A real-time kernel between the supervisor and the process equipment,
periodically refreshes the values of variables in the Supervisor database,
using data from communication frames.

• Each entry in the Supervisor database that corresponds to an equipment
source is further linked to a specific location in the communication frames.
At least one corresponding entry has to exist for a link to be established
between a frame and the database.

6.3 Experimenting with ICT

There are several deeply rooted issues when experimenting with ICT and many
of them stem from the extremely heterogeneous and dynamic nature inherent
in software-intensive systems. This section will briefly discuss some of the

88 Experimenting with Infrastructures

generic, overarching problems that need to be taken into account when using
and seriously experimenting with software. We will thereafter describe the
overall concepts of a system that can be used to generate and maintain software
based experiment environments able to strengthen control and improve the
accuracy of the gathered data.

Modern software is strongly structured around various hierarchical forms of
separations that are tied to some abstraction or to the semantics of surrounding
systems. Some of these are enforced by the technology that makes software
run, execute, as part of performing computations. Others are simply modeled
in ordered to, in some way, assist the development of software. There is, how-
ever, a certain degree of overlap between the two. For the sake of reference,
the abstractions that are strictly modeled are here called static and can as such
be studied and processed by tools and methods other than computers. Many
such separations are simply stripped away or reconstructed, optimized, into
something more efficient during the translation from human-readable formats,
source-code, into a format efficient for computer execution, i.e. binary-code.
Furthermore, the effect these static abstractions may have on program behaviour
can, to a fair degree, be predicted4 and determined as benign or as undesired
in advance. This can be done using formal techniques such as model checking
and theorem solvers, or through simulations on a modeled machine. An often
held fallacy in this regard, however, is that the source code used to construct a
software system is strongly representative of the program(s) that will execute
on a computer [8]. For the other category, dynamic abstractions and separations,
observable computation patterns, i.e. behaviours, are by and large undeter-
minable up until essentially the point where their corresponding execution is
performed. This is because executing software exhibits advanced characteristics
such as non-locality, heterogeneity, recursiveness, polymorphism, re-connectivity and
concurrency in addition to a very large space of possible states – all of which are
influenced by the information the system receives, processes and transmits.

The challenges of software make it tempting to break it down into smaller chunks
(programs, objects, libraries, processes, threads, etc.) and strategies are employed
both statically and dynamically to enforce and assure the separation of these
chunks. The dynamically enforced separations are referred to as virtualizations
and can be found at a variety of levels of granularity among which the more
commonly known one is the notion of processes in modern operating systems.
The separation provided even in those cases is, however, to a varying degree,
insufficient to safe-guard against all the aforementioned execution characteristics.
As shown by Fig. 6.4, the full execution of a bounded computation, virtualization,
is ideally dictated solely by its initial configuration (its code and its input).
However, there are dynamic sources of information that are necessarily external
to the virtualized space5 which still influence the execution in such a way that

4Even so, the limitations that stem from the age-old computability ’halting problem’ still apply.
5In fact, they do not even strictly have to be a part of the software-system in general, but may as

well come from the surrounding information system or from a user.

6.3. Experimenting with ICT 89

Pre-execution Post-execution

Input

External State

Persistent State

Figure 6.4: The virtualization problem.

the protective enclosure can be breached (means to intentionally do this is a
currently an active area of research within software security)6. Thus, even
though the intended target for experimentation is encapsulated using some form
of virtualization, an important step in initial experimentation is to isolate and
control such state-holders.

Means for performing controlled experimentation on fairly strong virtualizations,
such as processes which confine programs, are well developed and numerous.
However, when the form is less traditional, which is arguably the case with
critical infrastructures, the tools are far less advanced.

As an approach to expanding this control to incrementally larger borders, a solu-
tion called EXP [19], was developed as part of previous projects [85]. The Borders
of EXP is illustrated by Fig. 6.5. EXP is partly a hierarchical data-model describing
abstract roles that can then be assigned to lab-nodes in the environment, and
partly a set of services that enforce the policies defined by the roles of the nodes
when combined. The major services, as shown in Fig. 6.6 are thus:

• Startup - Role-specific bootloader sent over the network to affected nodes to
control node startup, used to run integrity/hardware checks, as an enabler
for other services and to activate the current configuration in a controlled
manner.

• Restoration - Provides the ability to generate snapshots of the inactive state
of a node but also the ability to revert to previous snapshots.

6This is a rather brief and shallow summary of the problem. The full extent of this discussion is,
however, well outside the scope of this chapter.

90 Experimenting with Infrastructures

Machine
OS

App

App

Machine
OS

App

App

Machine
OS

App

App

Experiment / Local Network

Corporate / University Network

Internet

EXP

Figure 6.5: EXP-I and its respective borders.

• Experimentation - Miniature, low-footprint FreeBSD-based OS for quickly
deploying small agents to act as input or noise (network traffic generators
and the likes) to main nodes.

A B C

EXP
Controller

Startup

Restoration

Experimentation

Monitoring

SERVICES

Figure 6.6: EXP-I services, monitoring added in EXP-II.

In addition to the nodes used for experiments, there is also an additional node
reserved for coordinating the others. This node is called a controller. The respon-
sibilities for providing and managing services and nodes are primarily put on the
controller. This enables two distinct modes of operation: Deployed environment
and Sustained environment. In a deployed environment, the nodes have physically
been hooked up to the controller for configuration. When configuration has been
completed for all involved nodes, the controller is either disconnected from
the network or reverted into acting merely as a network router. By contrast,
in a sustained environment, the controller actively micromanages the nodes7

7In some cases this includes their power supply using programmable outlets.

6.4. Experimenting with Power Grids and ICT 91

involved as well as acts as intermediate storage.

Expanding on these ideas, the ICT part of the environment detailed here takes
two geographically separated, sustained EXP environments and combines them
into one larger environment. This distributed environment is called EXP-II
and can alternate between a distributed and an isolated setting as well as pro-
vide monitoring services using dynamic tracing combined with post-mortem
analysis, for both online and offline data-acquisition on ongoing or completed
experiments.

Controller

Node 1 Node 2 Node 3

Subnet 3
Subnet 2

Subnet 1

Figure 6.7: The basic lab setup.

The initial structure for the EXP-II environment is depicted in Fig. 6.7 and
corresponds to an EXP controller, an IEEE 802.1Q (VLAN) [57] capable switch
and three lab nodes that each manage a subnet, as shown in Fig. 6.3. The quality
of the nodes and their parts were on the level of Commercial, Off-the-Self (COTS).
Two such setups were created, one for each of the two geographical locations.
This model will be expanded upon in the next section.

6.4 Experimenting with Power Grids and ICT

By taking advantage of both experiment environments as detailed in the pre-
vious sections, the task becomes to combine the two into a unified experiment
environments. This must be done while still maintaining the respective benefits,
reductions and structure of the individual environments but at the same time
open up for new opportunities without compromising functionality, integrity or
security.

92 Experimenting with Infrastructures

Controller

Coordination

Monitoring

Infrastructure

Subnet 3Subnet 2

SCADA HMI

Subnet 1

Node 1 Node 2 Node 3

OPC, AgentsFPIs

Data Management
Time Synchronization

Data Acquisition
Link Emulation

Figure 6.8: The basic lab instantiated, one mode of operation.

6.4.1 Isolated Operation

To bootstrap the experimentation endeavor, an incremental approach was ul-
timately chosen. The first step was to define and construct a software config-
uration capable of virtualizing the communication between three larger slices
of the SCADA system in the microgrid. To this end, the abstract experiment
environment detailed in Fig. 6.7 was instantiated as shown in Fig. 6.8. The soft-
ware configuration for the three nodes was running the FreeBSD [86] operating
system, configured as simple dummynet [36] routers. The dummynet configura-
tion was added to be able to emulate a variety of communication links, and it
could be changed at will by an operator. A major criterion for this stage was that
the environment should operate as an isolated cell, without access to external
communication through a corporate Wide Area Network (WAN) on the internet.
When the environment is in an active state, meaning that the experiment or
demonstration is running, the controller also routes between the nodes and their
subnets, aggregates the acquired data and sends out probe signals at frequent
intervals to verify and track current dummynet configuration. The actual data
acquisition occurs through raw packet recordings of each individual node on the
interface connected to the monitored subnet.

6.4.2 Joint Operation

The second step, then, was to establish the environment in a joint-operation mode.
In this mode, we have a situation where two controllers are connected to an
external, possibly hostile, environment; making security concerns more pressing.
To deal with this situation, and to establish a trusted connection, the respective

6.5. Challenges 93

firewalls by default refuse all incoming traffic. Then, at agreed upon points in
time, the remote location opens up for a single incoming connection from a fixed
source address. The other location initiates the connection through which a
Virtual Private Network (VPN) tunnel is established, using pre-shared keys that
have been exchanged offline. The difference in terms of information flow is that
the traffic between the different subnets is now duplicated and forwarded to the
remote network. Dummynets can still be used, but the default setting here is to
have them disabled.

6.4.3 Unified Operation

The third step was to establish the environment in a unified-operation mode, as
shown by Fig. 6.9. This mode builds upon the joint operation mode but with
several major changes. For starters, the bridging nodes at the local site no longer
perform any data-acquisition or traffic shaping (dummynets). Secondly, when
the VPN tunnel gets established, the static routes that previously joined the three
nodes together at the local site, are altered in order to redirect traffic to take a
’detour’ through their respective analogs in the remote lab. For instance; traffic
going from a FPI through (site a, node 1) destined for the OPC network, will
follow the path:

FPI→ (site a, node 1)→(site a, controller)→ (site b, controller)→ (site b, node 2)
→ (site b, controller)→ (site a, controller)→ (site a, node 2).

The return-path follows the same general pattern.

In closing, the overall principle behind these three modes of operation mim-
ics some of the ideas powering the microgrids as well. During ideal conditions
(unified operation), information is traded between cells (here represented by the
two physically separate environments) in a seemingly coupled fashion. Should
some event disturb or threaten this setting, the system reverts to a safer mode of
operation (joint operation) and should things deteriorate even further, they can
be switched to isolated operation. While not currently taken advantage of, this
could be an interesting avenue to explore further down the line.

6.5 Challenges

The purpose of this section is to highlight the less obvious challenges involved
in constructing the environment depicted in Sect. 6.4, and also to discuss issues
that, for practical reasons, were left open or that may prove relevant to projects
facing similar problems.

94 Experimenting with Infrastructures

Internet

Controller, Firewall

Node 1 Node 2 Node 3

Subnet 3

Subnet 2
Subnet 1

Controller, Firewall

Node 1 Node 2 Node 3

IntraNET(s) IntraNET(s)

VPN

* * *

Figure 6.9: Unified Operation Overview.

6.5.1 Technical Barriers

Constructing the unified environment proved challenging in several respects.
When the separate problems of experimenting with power grids and with ICT
are accounted for, the obvious and challenging part is the inherent coupling
between the power grid and its managerial ICT and the here assumed brittleness
of the devices and protocols involved in the SCADA process. Since the risk for
harming equipment through misconfigured ICT has previously been shown to be
considerable [87, 88], and since the nature of software behaviour is volatile8, there
are technical barriers which – until cleared through validation, implementing or
hardening of safe-guards on border conditions – put heavy restrictions not only
on the experiments themselves, but on software and network security as well.

Furthermore, the implicit maintenance requirements regarding the equipment
that comprises the physical layer(s) of the experiment environment bring forth
additional complexities that ascertain that the two environments have a synchro-
nized configuration to as fine a granularity as possible. One such issue concerned

8More specifically, far from all processing circuitry have clearly defined and tested reactions to
arguments received as part of communication protocols.

6.5. Challenges 95

a race condition through the use of a Keyboard, Video and Mouse (KVM) switch
to alternate between active nodes when working on several components in an
intermittent fashion. As per the principal problem of software experimentation
in a para-virtualized setting illustrated by Fig. 6.4, the activities of a KVM is
merely one such external state-holder that cannot easily be precisely controlled
or manipulated.

6.5.2 Economical Barriers

The ICT experiment coordination facility as depicted in Sect. 6.3 only has man-
agerial control over the three routing nodes in the main lab, along with the
corresponding devices in the analogous lab, i.e. it cannot directly roll-back or
otherwise control9 the components outside this abstract perimeter. While the
perimeter can be expanded using more specialized technology and software,
this has not yet happened and it is not an immediate goal. For this to happen,
we speculate that the reasonable, incremental enhancement would first be to
improve the granularity of the monitoring to cover not only communication
between fairly rigid interfaces, but also the comparably dynamic and adaptive
interactions inside the SCADA of the grid-level ICT. Another strong economical
barrier with technical undertones is the cost of maintaining two instances of
the same ICT laboratory environment. This is problematic for primarily two
reasons. The first reason is that domain expertise may be geographically tied
to one (in a collaborative project such as the one depicted herein) or none of
the geographical instances (outsourced). Either situation will produce a cer-
tain overhead in response times during troubleshooting and maintenance. The
second reason concerns the comparably short longevity of core components
such as hard-drives [21] that are susceptible to stress. While cheap and easily
replaced, such maintenance again needs to be synchronized between the sites
and considerations taken of possibly influential entropy (such as wear-leveling
in flash-based storage devices) [22].

6.5.3 Political Barriers

Due in part to the incremental development of the distinct (Sect. 6.3, Sect. 6.2) en-
vironments, there is an additional dependence in the case of the intermediate ICT
infrastructures of the respective local area network environments at both ends.
Although virtually separated through technologies such as Virtual Local Area
Network (VLAN) tagging, the environments rest on the preexisting networking
infrastructure, including Local Area Network (LAN)/WAN border management
such as firewalls and intrusion detection systems. When, as in our case, the
larger WAN is the Internet, border management policies tend to be very strict

9The data being communicated can, of course, be tampered with, but such interventions are
comparably coarse in comparison to being able to directly modify the software.

96 Experimenting with Infrastructures

and it is therefore likely that incompatibilities arise between such policies when
the networks and policies have been developed independently of each other.
Ultimately, this can be construed as a political barrier that causes significant
technical consequences. For the particular scenario described here, the major
limitation was the need to essentially tunnel TCP over TCP rather than TCP
over User Datagram Protocol (UDP) [58] for the VPN. This implies undesired
interactions when TCP’s retransmission algorithms are applied recursively; a
problem likely to result in a noticeable decrease in network performance. The
extent of this problem is lessened, however, by the distinction between isolated
operation and unified operation, since the different modes complement each other.

6.6 Opportunities

In addition to the benefits than can be reaped in the respective domains from
the individual infrastructure environments, there are quite a few interesting
opportunities that open up when combining the structure from Sect. 6.4 with the
considerations in Sect. 6.5. This section will elaborate on a few of the opportuni-
ties that may be of interest in the near future.

6.6.1 Protocol Design and Evaluation

There are lots of protocols involved in current SCADA systems, ranging from
small, narrow and product specific to broad and generic. Given the fairly radical
suggestions regarding the future of the grid(s), there are justified concerns regard-
ing how some of these protocols will behave in new settings, which restrictions
they impose on supporting communication and processing technologies, exactly
which information is communicated and similar aspects. The datasets that will
be obtained from isolated operation can be used to specialize or generalize avail-
able protocols to fit new grid structures such as the microgrid, but also function
as input to the design of future network protocols and to the configuration of
security equipment such as firewalls and intrusion detection systems.

6.6.2 ICT Monitoring Models

The complex interactions between information processing systems, information
systems and the physical grid have been a source of much commotion, and
one does not need to look further than the northeastern blackout of 2003 for
strong examples to that effect. The work involved in discovering the underlying
causes behind such events is further complicated by the complexity of software
analysis and debugging. With more adaptive ICT systems, more modern network
structures and more dynamic services models, there will be an even stronger
incentive to monitor not only these different layers individually, as is currently
done, but to monitor them in relation to each other. The setup that has been

6.7. Conclusions 97

covered here may serve as a useful starting point for the development of such
monitoring models, technologies and methods that essentially allow the SCADA
concept to be applied recursively, i.e. SCADA for SCADA.

6.6.3 Rogue SCADA

That SCADA systems have a dodgy past in terms of security and notable recent
incidents [59, 60], have served to emphasize this fact, and it seems unlikely
that we somehow will be able to retrofit major developments in software and
information security to be usable in current closed and legacy-rich SCADA
systems. Provided, for instance, the development of more resilient grid structures
like microgrids, the SCADA and the end-users will become even more interesting
and likely targets simply because of the ability to more precisely guide an attack.
The structure proposed here allows for an evaluation of the consequences of
various kinds of directed attacks and their corresponding protections from the
perspective of an antagonist outside the system (denial of service, side-channels
of data-flows, etc.). When using the unified mode the proposed structure also
make it possible to evaluate what the effects of a compromised cell could be.

6.7 Conclusions

In conclusion, tools and means for the controlled experimentation on the interface
between ICT and energy transmission in a critical, self-healing context have been
introduced. We can use this not only to properly evaluate means for improving
resilience, but also to obtain much needed datasets on systemic behavior in
several situations characteristic of future smartgrids and microgrids. To this end,
several barriers relevant for those working on similar targets, have also been
identified. While the majority of the work described there has been completed
or is very near completion, work for the near future involves exploring the
opportunities mentioned, but also attempting to generalize this solution to fit
other experiment-oriented endeavors and needs from similar domains.

6.8 Errata

The following alterations have been made during the preparation of the thesis:

• Figure depicting basic SCADA and the corresponding description were
moved to the Context chapter, Page 19.

• A superfluous figure on how the OPC subsystem related to Fig. 6.7 was
removed.

7 Conclusions

In this, the final chapter of the thesis, we summarize the efforts and contributions
thus far and contrast them with relevant criticism, related work and validation
and we also explore possible roads for future work.

7.1 Summary

Starting with the mission statement ”to enable the transition of brittle software-
intensive infrastructures into resilient software-intensive infrastructures”, we began
our work by addressing the subsequent research questions:

• RQ1- Which principal mechanisms exist for enabling and improving re-
silience in software-intensive systems?

• RQ2- To which extent can the drawbacks or caveats associated with virtu-
alization be controlled?

We established virtualization as the overarching means for enabling resilience
in software-intensive systems, (Paper I). A virtualization is here defined as the
embodiment of a subset of computing abstractions targeting one or several
of these three key resource groups: storage, communication and computation. A
virtualization splits the state space of its machine into two parts, a virtual space
and a machine space (environment). The primary activity for a virtualization is
thus to dynamically translate between the code of the virtual space to that of the
machine space. This phenomenon is recursive, so that the machine space of a
particular virtualization may be the virtual space of some other virtualization.
We also established the constraints of virtualization, based on whichever benefits
that are currently desired for the targeted system. From this set-up, a series of
principles was deduced, i.e. in order to maintain and ascertain the validity of
each placed virtualization we have to:

1. Tighten boundaries – Ascertaining that all of the resources which are being
virtualized are explicitly treated as virtualizations, and thus not being
virtualized redundantly. If they were, it is likely they inadvertently encom-
pass parts that were neither desired nor taken into account at a latter stage
when applying the other principles.

99

100 Conclusions

2. Reinforce borders – Identifying the relevant interfaces, protocols and conven-
tions that connect the activity in the virtual space to its machine space.
Thereafter preventing, detecting and removing the interactions (i.e. bidi-
rectional data-flows across these borders) that rely on, or take advantage
of, lax, unintended or otherwise ambiguously specified data-flows.

3. Act on anomalies – Placing reactive measures that deal with undesired in-
teractions as identified by Principle 2. Integrating these measures with the
implementation of the virtualization, ascertaining that these can be acti-
vated not only by the intended monitoring conditions, but also by a trusted
source (any person or external process with the means and authority to
modify the virtual space of the subject).

4. Implement Monitoring – Sampling, gathering and presenting behavioral
data from a. the virtual space, b. the virtualization and c. the environ-
ment, in order to evaluate the influence on resilience and the validity of
protective measures and to empower involved stake-holders by providing
representative information as to the dynamic properties and overall status
of the subject at hand.

These principles combined assist in hardening the use of virtualization as a form
of encapsulation of a subsystem. The success of this relies on establishing the
external state holders that influence and hinder controlled experimentation with
a subject (Fig. 7.1). The principles can be applied iteratively, essentially allowing
for adaptive dynamic hardening.

Pre-execution Post-execution

Input

External State

Persistent State

Figure 7.1: External state-holders and their influence on virtualized resource(s).

We also provide a basis for how to experiment with these principles on a live
subject. Working from the other stated research question:

7.1. Summary 101

• RQ3– Among the sets of tools that enable dynamic instrumentation of
software-intensive systems, which are suitable for controlling virtualiza-
tions in critical software-intensive infrastructures?

We examined the available tools currently widely used in both industry and
the academy, and the respective mechanisms on which said tools operate, and
reasoned as to how these mechanisms may interplay with the aforementioned
principles. Some of the major shortcomings that were noted include:

1. With the symbolic debugger, the level of control and intervention required
for implementing breakpoints1, which are necessary to maintain source-
level symbolic debugging will be increasingly difficult to achieve for some
stakeholders. Furthermore, the interfaces used to achieve such control are
quite easy to detect from the targeted code, and many legitimate (copy and
integrity protection schemes and other forms of surreptitious software)
and dubious (worms, viruses) programs take advantage of this fact to alter
their behavior in, for the analyst, counter-productive ways.

2. With post-mortem analyzers, the relevance of the accessible information can
be very high when the effect studied falls within a proximate onset, proximate
cause kind of scenario. However, relevance quickly shrinks with time as the
state holders required to perform the analysis get overwritten at a rapid
rate. Thus, post-mortem analysis depends on how much of the type and
location of specific data that can be determined in advance, but also on the
trigger that induces a terminal state or generates a snapshot is proximate
in time to the underlying issue.

3. With tracers, the central issue is the model to which gathered measure-
ments are attached. Even though this modeling challenge is shared with
post-mortem analyzers to some degree, a key difference is in the source
of the measurements and the relative timing. In the post-mortem case,
the concern is how much data can be extracted and made useful from an
instance that has come to a very distinct halt. In the case of tracing, you
rather have a series of tools that provides small samples of a few specific
key data, often generated throughout the life-span of the program in ques-
tion. The most primitive of these tools are the ones that are integrated in
the subject, e.g. printf statements or calls to system log facilities.

Many software systems that previously had well-defined or isolated roles (such
as cellphones, games, browsers and even web services), turn into more open
frameworks that allow third party developers in as time goes by and as the
popularity of the system in question grows. This makes matters much more
complicated for those responsible for the platform. Many facilities for allowing

1This is a central control mechanism in that it specifies a location in memory that, when executed
or modified, will transfer control to a handler routine.

102 Conclusions

users to report problems, suggest improvements, etc. do not, and in some
cases cannot, include the third party developers in question. As the control and
influence over how the services rendered will be perceived lessen, the challenge
in using the aforementioned tools increases. This is in part due to hidden
interactions by third-party components (amplified by the use of obfuscation,
digital rights management and other means for limiting or hindering reverse
engineering and similar activites), but also since the stakeholders responsible
for analysis have fewer options for quickly understanding the function and
implementation details of some components (lack of access to source-code, build
system configuration, design documentation etc.).
To start addressing these concerns, it was suggested that a more broad control of
the tool chain and the interaction between individual tools is needed, but also that
current tool suites are, to an extent, insufficient and need to be complemented by
a broader framework of configurable probes capable of alternating between both
native and non-native forms of representing measurements.
Finally, as a step towards experimentally validating these ideas in the context
of critical software-intensive infrastructures, a distributed ICT experimental
environment (Fig. 7.2), EXPII (Paper III) was engineered following the final
research question:

• RQ4– What core services and components are needed to construct experiment envi-
ronments capable of experimenting with the resilience of software-intensive critical
infrastructures, and which guidelines should regulate such experimentation?

Recorder Indicators

10 FLAIR 200C 3 enregistreurs

Server OFS

Agent 1 +
server OPC

SCADA
 Server PcVue1
Server OPC

Automate
reconfiguration

Agent 2 +
server OPC

Switch 24 ports

Controller Node 2 (zone2) Node 3 (zone3) Node 1 (zone1)

Client PcVue
POG

Automate
Zone 1

SCADA
 Server PcVue2
Server OPC

Automate
Zone 2 Automate

Zone 3

PC
Configuration

API

Figure 7.2: Overview of ICT components and their interconnections.

The developed environment currently enables us to virtualize, monitor and
intervene with, amongst other things, the communications of a SCADA-system

7.2. Related Work 103

governing a micro-grid cell from the perspective of either an analyst, an antago-
nist that have gained link-level access, or that of an antagonist who has breached
or circumvented higher barrier security measures (VPN-tunnels, firewalls, Intru-
sion Detection Systems, etc).

7.2 Related Work

There are, of course, several bodies of work that are either complementary,
contradicting, similar or in other ways influential to the ideas that are presented
in this thesis. The major works that were taken into account, rather than simply
the references used, will be covered briefly.

In terms of European research efforts, the projects directly related to this thesis
are (CRISP) [85], INTEGRAL [85] and SEESGEN-ICT [79].

CRISP

distributed intelligence in CRitical Infrastructures for Sustainable Power had the
cited goal of investigating, developing and testing how the latest advances in
distributed intelligence by information and communication technologies could
be exploited in novel ways for cost-effective, fine-grained and reliable monitoring,
management and control of power networks with high degrees of Distributed
Generation (DG) and RES penetration. The project was concluded in 2006 and,
among the deliverables, D3.1 [89] and D5.3 [90] are related to the design and
implementation of an experiment environment that was in fact the predecessor
to the one described in Paper III.

INTEGRAL

Integrated ICT-platform based Distributed Control in Electricity Grids has the cited
objective of building and demonstrating an industry- quality reference solution
for DER aggregation-level control and coordination, based on commonly avail-
able ICT components, standards, and platforms. Furthermore, the project aims
to demonstrate how this is practically achievable within a short to medium time
frame. As noted in the Acknowledgement section, the work underlying this
thesis was partially funded by this project.

The practical validity of this project is to be shown through three field demon-
strators, covering the full range of different operating conditions:

1. Normal operating conditions of DER/RES aggregations, showing their
potential to reduce grid power imbalances, optimize local power and
energy management, minimize cost etc.

104 Conclusions

2. Critical operating conditions of low voltage DER/RES aggregations, show-
ing how DER can benefit stability when integrated with the main grid.

3. Emergency operating conditions showing the self-healing capabilities of the
grid components.

Among these different demonstrators, the emergency operating conditions ap-
peared to be the most relevant target while planning the work behind this thesis.
This is because the demonstrator covered self-healing, time-critical components
and a brittle software-intensive infrastructure with a large legacy. Furthermore,
the demonstrator is likely to forego large restructuring in the near future.

The interplay beteween the factors can be found in Sect. 7.3.

SEESGEN-ICT

Supporting Energy Efficiency in Smart GENeration grids through ICT – has the
cited objective of producing a harmonized set of priorities to accelerate the
introduction of ICT into the Smart Distributed Power Generation Grids and
to investigate associated requirements and barriers. SEESGEN-ICT aims to
produce policy recommendations, identify best practices and draw scenarios
and roadmaps for the next generation of electric distribution network.

As noted in the Acknowledgement section, the work underlying this thesis was
partially funded by the SEESGEN-ICT project.

Among the preliminary results, parts of the deliverables D3.1, D3.2, D3.3 and
D3.4 cover many of the discoveries made here, but within a more generic smart-
grid context.

7.3 Validation

In this section, we examine how the respective research questions connect to the
contributed principles, tools and environments, and how they all combine into a
demonstrator used to show a self-healing response to a disturbance within a cell
of a scaled down microgrid. Data from initial experiments are also presented.

Expanding on the principles from (Paper I), it is clear that they are indeed very
similar to the ones that enable resilience in a broader sense as presented in the
introductory chapter. To make a brief comparison:

Decouple Components

Decoupling is a fiendishly simple idea. You can have systems that are somehow
artificially strapped together. The task is then to simply find these bonds and
remove them, and somehow the situation has improved. On the other hand, we

7.3. Validation 105

can examine the method by the way of two simple analogies. For instance, we
can use nuts, nails, bolts and welded joints to piece together the raw materials
of a structure and, except when restructuring or salvaging materials, it seems
foolish to even try and remove these as a means of improving the structure.
However, as in the case of conjoined twins, there is more interest and value in
being able to separate the two, even if this is not a particularly easy task which
always comes with a high risk.

With software, maintaining low coupling is an often desired design-time value,
but when the software in its usable form has finally been put together, it is futile
and rarely possible to arbitrarily remove any distinguishable part; code is data,
but data is also code. In that sense, decoupling is used more as a metaphor than
something which is finally engineered. What this metaphor establishes in the
current context is essentially which relative parts that are external state holders
and which parts that can be located within a virtual space. In more practical
detail, software is seldom entirely monolithic. While operating system kernels are
a commonly used example of software monoliths, they can still be affected by
loadable device drivers. Similarly, software does not consist of loosely connected
small parts that can be grabbed of a shelf, and glued together.

The virtualization parallel to decoupling components is in part the establish perimeter
principle, and in part the reinforce protocols principle. The perimeter that can
be established, however, can be arbitrarily selected by some stakeholder. When
that has been said and done, reinforcing the protocols involved can be viewed
as a preparatory means to enable restructuring, which would only ever be a safe
operation with a subsystem that fulfills the virtualization ideal.

Connecting this principle to the demonstrator, the perimeter and the decoupling
are established based on the observation that the involved components had been
coupled with the specific networking environment in which they were developed.
For instance, the communication between the fault-passage indicators and the
fault-recorders was not intended to use other parts of the SCADA, nor were the
agents supposed to communicate directly with the FPIs. The links between each
component, furthermore, needed to be sized and work in separate networks or
subnetworks; conditions that were not in effect when the individual components
were developed and integrated.

Implement Self-healing

Like the case with decoupling, self-healing also appears to be a fairly simple task:
You only need to have a part of the system detect errors, localize the underlying
fault and then apply corrective measures. However, when trying to implement
this in software, it rapidly becomes obvious that this is difficult if not outright
impossible. While error detection is a direct effect of the reinforced protocols,
localizing the underlying fault is not. Returning to the classification scheme
in Sect. 2.4, which stipulates the effects that are observable during execution,
i.e. data corruption, terminal state and inadequate performance, we note that not

106 Conclusions

all of these can be readily detected and, furthermore, that they can be causally
linked and cascade. Since the data or state relevant to untangle such effects can
be irreversibly lost very rapidly under these circumstances, we cannot reliably
reverse the chain of events back to the initial cause.

A Suggested solution to this predicament [38] is to exploit the possibility of
repeating the computing performed between the last snapshot and the observed
effect. This is achieved by generating a test-case2 that makes the fault repro-
ducible, and then enumerate the space of possible interactions until a relevant
subset of causally relevant contributors can be determined, something that may
require hundreds of thousand of repetitions. This is entirely unfeasible for critical
software-intensive infrastructures.

Since models for self-healing have progressed a lot further with respect to the
powergrid and to network communication, one of the main points of the demon-
strator was to illustrate viability. Self-healing software as such is excluded from
the scope of this thesis and therefore, this principle does not currently have any
corresponding virtualization principles. However, even with the demonstrated
self-healing of the grid, this needs to be considered from the perspective of a
larger, aggregate system and not from the individual disciplines as such.

Iteratively Harden

A hardening software system has at least two distinct, but complementary,
perspectives. Typically, the most commonly used one concerns the removal of
services or processes that are deemed superfluous and which come into effect
with default configurations of larger pre-packaged software such as operating
system distributions, where many services that could in some general sense be
considered useful or interesting, are in fact irrelevant or insecure for a specific
setting. The other perspective is, in essence, repairing (debugging) problems
in one specific instance and, if possible, generalize it to other instances. This
corresponds with the virtualization principles of reinforce borders but also act on
anomalies, even though it is not the main intent behind said principles but rather
a subsidiary effect of combining the two.

This principle was applied during the course of development of the demonstrator
and the subsequent experiments, in the sense of individual filter configurations
(firewall rulesets) on the nodes governing the subnetworks. During the initial
runs, most of the default services and associated communications were allowed
through, and from post-mortem analysis of network traffic, these filters were
reconfigured to only allow traffic that was then known to be needed for the
normal and self-healing operation of the SCADA and the agents.

2In execution, this concerns storing and replaying all interaction that occurs within the timeframe
from the last accessible snapshot and the detected error.

7.3. Validation 107

Controller

Coordination

Monitoring

Infrastructure

Subnet 3Subnet 2

SCADA HMI

Subnet 1

Node 1 Node 2 Node 3

OPC, AgentsFPIs

Data Management
Time Synchronization

Data Acquisition
Link Emulation
Fault Injection

!"#$%&'()$
!"#$%&'(

)*+#,-(

./01203)1
!4%&'(

3'5%6(

!"#$%&'()*+,(+&-+".)&
!"#$%&'(

)*+#,-(

./01203)1
!4%&'(

3'5%6(

Remote Experimentation

Figure 7.3: Snapshots of the monitoring present in the demonstrator (SCADA
HMI screenshot excluded).

Introduce Monitoring

The last principle, is shared by both the resilience and the virtualization perspec-
tives and concerns gathering and presenting data about the internal states and
interactions of a system, rather than its distinct inputs and outputs (directed
towards the users and operators of the system). Hence, the difference is primar-
ily that of stakeholders and demarcation. From the virtualization standpoint,
monitoring is needed for error detection but also in order to find reconfigurations
that could invalidate previous efforts.

The monitoring used (Fig. 7.3) for the demonstrator was partly the HMI of
the SCADA as such. This was used to verify the function of the agents and
of the fault-injection in the microgrid and so on, but also for verifying the
transparency of the virtualization provided by the experiment environment. At
the same time, however, these inputs and outputs would, from the perspective
of the experiment environment, be regarded as internal states. The monitoring
was therefore further complemented by having the routing nodes continuously
logging all traffic that was passed through each subnet and generating real-time
graphs describing the number of packages and the amount of traffic (custom
scripts). The last piece of monitoring was provided by having the controller
repeatedly sending out latency probes to the nodes (using smokeping [77]).

The traffic logs enabled post-mortem analysis when combined with tools for
that purpose (the results presented are from the use of Wireshark [91]). The
graphs from the individual nodes provided an internal dynamic view of current
activities, and the trace probes provided an external dynamic view. These were
all combined in an administrative web-interface for the experiment environment
as such.

108 Conclusions

Mode 3

Mode 1

Mode 1

Figure 7.4: Latency traces for several iterations of a self-healing sequence.

!"#$%&'()$
!"#"$%&

!"#$%&'(

)*+#,-(

./01203)(

3'4%5(

!"#$#%&'()*%
!"#$%&'

!"#$%&'(

)*+#,-(

./01203)(

3'4%5(

!"#$%&'()*+&
!"#$%&

!"#$%&'(

)*+#,-(

./01203)(

3'4%5(

!"#$%&'()*+,(+&-+".)&
!""#$%&

!"#$%&'(

)*+#,-(

./01203)(

3'4%5(

Figure 7.5: Protocols (Ambient, Modbus, RPC/DCOM, Other) in proportion to
the total traffic of each subnet.

7.3.1 Results

The final environment is similar to the one illustrated in Fig. 7.2, but expanded
to have four physical nodes and four corresponding subnets (FPI, FR, Agent,
SCADA) after it was discovered that the initial configuration of 3:3 had a side
channel (external state-holder) into the SCADA system due to networking con-
straints in the university LAN (some of the components of the full SCADA
system were also used for other labs, demos and projects).

Fig. 7.4 depicts the latencies of the SCADA subnet over the course of a day of
experimentation. Mode 3 corresponds to remote experimentation, meaning that
the traffic from every subnet was redirected from the lab in Grenoble to the
one at Blekinge Institute of Technology. The colored lines indicate the average
latency, the color shows the packet loss experienced and the different shades of
grey indicate the variance between probes. The latency probes were configured
to pass 20 probes every 5 minutes.

Fig. 7.5 depicts the distribution of the detected protocols in each subnet relative

7.3. Validation 109

Source Destination % of total traffic
FPI FR 22
FR FPI 25
FR Agent 26
Agent FR 5
Agent SCADA 10
SCADA Agent 12

Table 7.1: Traffic ratios.

FPI FR Agent Scada Time Elapsed
(0) (3/6) (0) (10/167) (0) (130/21) (0) (25/25) 6s
(25) (5/3) (25) (4/28) (25) (30/4) (25) (4/5) 24s
x (3/2) x (2/0) x (20/1) x (3/3) 36s

Table 7.2: Notable link configurations (latency introduced, milliseconds), peak
traffic rates (output/input) KiB/s and time for the self-healing scenario to com-
plete.

to the total amount of traffic within that subnet, extracted from the snapshots
of the raw traffic logs (libpcap [92] format). Note that traffic marked as ambient
concerns traffic that was identifiable as part of the upkeep of the devices in the
network as such and thus generic to these devices’s respective operating systems
(ARP, NTP, Samba and SNMP/ STP from switches). The traffic generated by
the ping-probes from the controller was filtered and excluded from all graphs.
In the case of the FPIs, the increase in ambient traffic is due to the ARP MAC - IP
discovery / refresh. Even so, it still is notably high.

Furthermore, the traffic in the Agent subnet marked as Other is, on closer in-
spection, also RPC/ DCOM that could not reliably be detected as such. The
most probable explanation to this fact is that the implementation of the proto-
col deviated slightly from what was expected by the dissector module in the
analysis tools and, subsequently, the implementation lost track of the dynamic
port allocations that are central in the design of this particular protocol. This
explanation is supported when repeating the analysis on larger dumps where
the proportion of data that could not be properly classified grows as time goes
by, even though the exact split point where the stream goes from detected to
undetected varied.

Table. 7.3.1 shows the proportions of the total measured traffic that passed
between the different subnets. Note that this only relates to the traffic necessary
for fault detection and self-healing, and not to other kinds of SCADA traffic.
Other activities of an operator that is confined to the SCADA as such are not
covered.

110 Conclusions

Reset nodes and monitoring
to a pristine state.

Connection initiation
Topology discovery.

Polling updates

Fault Detection

Determining response

Polling updates

Figure 7.6: Annotated graph of one iteration of a self-healing scenario, from the
perspective of the node governing the agent. Thus, output entails data being
sent into the agent subnet.

Table. 7.3.1 depicts some notable values from a series of iterations of the same
self-healing scenario and the time elapsed from the point where a fault was
detected to the point where an agent tells an operator which breakers to open
and/or close. As a point of reference, the upper response time (depending on
nationality, regulations, fault-type and other factors) is around 160s. Considering
the early stages of agent development, the SCADA was set up to ignore the issued
command because of the serious risk of damaging equipment if the wrong action
was initiated.

Lastly, Fig. 7.6 shows one successful run of the self-healing scenario, starting from
a forced reset of the monitoring. It is quite clear, even without access to domain
expertise and using only course-grained measurements, where and when the
process is the most vulnerable.

To summarize, some of the major key points noted have been:

• The communication between the fault-recorder and the agent is the most
influential. Should such a solution be integrated into current grids, the
fault recorder would be part of the RTU in a transformer station, while
the agent solution would be close to the HMI. In this case, even small

7.3. Validation 111

increments in latency between Agent and FR lead to drastic increases in
the time required for the self-healing process.

• It is trivial for a third party to detect when self-healing is initiated. This
moment is also when the system is most vulnerable. Even a denial of ser-
vice attack on the communication infrastructure would suffice to increase
the damage done to the grid.

• The communication protocols involved are poor choices in respect to estab-
lishing protective devices within the confines of the SCADA. Furthermore,
the higher level protocols couple with lower level addressing schemes,
preventing Network Address Translation (NAT) and other optimizations
(a transition to IPv6 would, for instance, not be possible without extensive
modifications).

• Except for an operator actively browsing around with the HMI complain-
ing about the interface feeling less responsive, there were no notifications
in the HMI of problems pertaining to changes in the network configuration.
The transition between running locally and redirecting all traffic through
several foreign networks was, in that sense, transparent.

• Preliminary tests indicate that application- layer checksum facilities were
in part not used, and in part ignored.

7.3.2 Future Work

The work presented is to a large extent open ended with several interesting paths
left to explore.

The need for well-engineered and open tools for enabling controlled experimen-
tation on software-intensive systems is still strong. Thus, the key may well be
to open up the environment and the underlying tools to a select few applica-
tion domains in addition to that of critical infrastructures, and then focus on
retrofitting and generalizing developments from these domains into a shared
package. Some application domains could include forensics and e-learning labs
since they face similar challenges in terms of monitoring and supervised control.

For the current environment, there are already many direct enhancements and ex-
pansions to consider. Based on the initial tests, it is quite clear which protocols, or
rather, which specific data that need to be communicated, and how sensitive and
important this data are in regards to the ongoing self-healing process. It would,
however, be interesting to further verify this against competing SCADA solutions
and then evaluate the result in the light of impending smart grid deployment in
general and the consequences of expanding the SCADA monitoring approach
towards more low-voltage applications (such as smart homes) in particular.

From a security perspective, there is a large ongoing discussion on how to
retrofit various kinds of protective measures that are otherwise common parts of

112 Conclusions

corporate IT. This discussion is further fueled by recent examples of just how
vulnerable SCADA systems can be, and the considerable impact of successful
attacks, suggesting that merely relying on encrypting and tunneling sensitive
data may well be unwise. But the investment of the full scale option – in terms
of deploying and maintaining public-key encryption, tuning intrusion detection
systems, undertaking procedures for deploying patches and revoking access
keys and training personnel, etc – is considerable and it should therefore be
worth looking into developing attack scenarios against which these protective
measures can be exercised and evaluated.

Turning towards slightly more academic topics, it would be interesting to com-
bine the tracing approaches from software debugging with a more SCADA- like
perspective to gain a larger toolbox of sensors and sensor network configura-
tions capable of creating dynamic monitoring tools for studying and correlating
events on many levels (combining adaptive traces from surveillance equipment,
network traffic data, infrastructure sensor information, etc.), allowing us to bet-
ter monitor infrastructure ”health” and investigate anomalies. This notion has
further branches in the inherent conflict of interest between, on the one hand,
information security and, on the other, maintenance and debugging.

A concern shared by all these topics, is the grand challenge of educating new
generations of analysts, and to retrain experienced analysts towards deeper
understanding of modern software dynamics in relation to a wider software-
intensive perspective. This might be attainable through minor incisions to current
study programs, but chances are that a larger restructuring may be necessary.
Indications as to the how and the why behind such changes can be found in [93].

A Glossary

This appendix section provides a list of abbreviations along with definitions of
the major terms used throughout the thesis.

Definitions

Software/Program A (computer) program generally refers to a specific series
of instructions to a computer. Each instruction has two possible parts,
code (mandatory) and data (optional, depends on the specific instruction).
Software is used as a broader term for collections of programs with a
designated purpose or task.

State The current operating conditions of a computer or a program.

State-holder Any data that current, and future, computing depend on.

Execution The activity of carrying out the instructions of a program.

Environment All the parts or programs involved in the upkeep, management
and execution of some specific piece of software.

Static Programs that cannot, or do not, change during execution.

Dynamic Programs that change during execution. Can also refer to information
that is created during execution.

Behaviour Specific or generic patterns on observable and measurable reactions
as a consequence to some stimulation or activity.

Machine Any device (physical or abstract) that enables computing (any or all of
the three categories: storage, communication and calculation).

Virtualization A program that dynamically translates data into code native to a
machine, allowing programs to be articulated and executed in two different
levels, in a virtual space and in a machine (or native) space.

Interface The dimensions and boundaries of data exchange.

Protocol The regulated flow of information across an interface.

113

114 Glossary

Embedded System A combination of software and computer(s) that is designed
to fit a very specific and well-defined role or function.

Resilience The ability of a system to harness disturbances.

Fault-tolerant The ability of a system to continue operation in the event of the
failure of some of its components.

Dependable The extent of which a system can be relied on or trusted.

Brittle The tendency of a system to break when subject to high stress.

Acronyms

API Application Programming
Interface

CISC Complex Instruction Set
Computer

COTS Commercial, Off-the-Self

CPU Central Processing Unit

GPU Graphics Processing Unit

MMU Memory Management Unit

NOP No OPeration

DMA Direct Memory Access

DSP Digital Signal Processor

FPI Fault Passage Indicator

FR Fault-Recorder

SCADA System Control and Data
Acquisition

IDS Intrusion Detection System

ICT Information and Communication
Technologies

IPS Information Processing System

IS Information System

MTU Main Terminal Unit

RTU Remote Terminal Unit

HMI Human Machine Interface

ROP Return- Oriented Programming

SQL Structured Query Language

LV Low Voltage

MV Medium Voltage

HV High Voltage

UNIX Uniplexed Information and
Computing System

OSI Open Systems Interconnection

PRNG Pseudo- Random Number
Generator

RAM Random Access Memory

RFID Radio Frequency Identifier

RISC Reduced Instruction Set
Computer

ROM Read Only Memory

TCP Transmission Control Protocol

IP Internet Protocol

V Voltage

DER Distributed Energy Resources

RES Renewable Energy Sources

RAID Redundant Array of Inexpensive
Disks

Glossary 115

IT Information Technology

NSF National Science Foundation

VA Volt Ampere

INTEGRAL Integrated ICT-platform
based Distributed Control in
Electricity Grids

GENI Global Environment for Network
Innovations

OFS OPC Factory Server

VPN Virtual Private Network

KVM Keyboard, Video and Mouse

WORE Write Once, Rune Eveywhere

DSO Distributed System/Service
Operator

LSO Local System/Service Operator

DG Distributed Generation

JNI Java Native Interface

VM Virtual Machine

IED Intelligent Electronic Device

WAN Wide Area Network

LAN Local Area Network

VLAN Virtual Local Area Network

UDP User Datagram Protocol

PLC Programmable Logic Controller

ARP Address Resolution Protocol

NTP Network Time Protocol

SNMP Simple Network Management
Protocol

STP Spanning Tree Protocol

MAC Media Access Control

NAT Network Address Translation

DCOM Distributed Common Object
Model

RPC Remote Procedure Call

JVM Java Virtual Machine

DRM Digital Rights Management

HLE High-Level Emulation

OS Operating System

GNU Gnu is Not Unix

MAME Multiple Arcade Machine
Emulator

WINE Wine Is Not an Emulator

LLVM Low-level Virtual Machine

B References

117

Articles

[1] D. Patterson and G. Gibson, “A case for redundant arrays of inexpensive
disks (raid),” Proceedings of the 1988 ACM, Jan 1988.

[2] K. Thompson, “Reflections on trusting trust,” Communications of the ACM,
Jan 1984.

[3] E. Coffman and M. Elphick, “System deadlocks,” ACM Computing Surveys,
Jan 1971.

[4] B. Stahl, L. L. Thanh, R. Caire, and R. Gustavsson, “Experimenting with
infrastructures,” in Critical Infrastructure (CRIS), 2010 5th International Con-
ference on, September 2010, pp. 1 –7.

[5] R. Gustavsson and B. Ståhl, “Self-healing and resilient critical infrastruc-
tures,” in CRITIS, ser. Lecture Notes in Computer Science, R. Setola and
S. Geretshuber, Eds., vol. 5508. Springer, 2008, pp. 84–94.

[6] P. Mellstrand and B. Ståhl, “Analyzing systemic information infrastructure
malfunction,” in Critical Infrastructures, 2009. CRIS 2009. Fourth International
Conference on, april 2009, pp. 1 –4.

[7] R. Gustavsson and B. Ståhl, “The empowered user - the critical interface to
critical infrastructures,” in Critical Infrastructure (CRIS), 2010 5th International
Conference on, September 2010, pp. 1 –3.

[8] G. Balakrishnan and T. Reps, “Wysinwyx: What you see is not what you ex-
ecute,” ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 32, no. 6, pp. 1–84, 2010.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
SIGOPS Oper. Syst. Rev., vol. 37, pp. 164–177, October 2003. Available:
http://doi.acm.org/10.1145/1165389.945462

[10] S. Crosby and D. Brown, “The virtualization reality,” Queue, vol. 4, pp. 34–41,
December 2006. Available: http://doi.acm.org/10.1145/1189276.1189289

[11] D. A. Menascé, “Virtualization: Concepts, applications, and performance
modeling,” in Int. CMG Conference. Computer Measurement Group, 2005,
pp. 407–414.

119

http://doi.acm.org/10.1145/1165389.945462
http://doi.acm.org/10.1145/1189276.1189289

120 Articles

[12] M. Arnold, S. Fink, D. Grove, and M. Hind, “A survey of adaptive opti-
mization in virtual machines,” Proceedings of the IEEE, pp. 449–466, Feb
2005.

[13] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong pro-
gram analysis & transformation,” in Proceedings of the international symposium
on Code generation and optimization: feedback-directed and runtime optimization,
ser. CGO ’04, 2004, pp. 75–.

[14] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compatibility is not
transparency: Vmm detection myths and realities,” Proceedings of the 11th
USENIX workshop on Hot topics in operating systems, pp. 1–6, 2007.

[15] G. Phillips, “Simplicity betrayed,” j-CACM, vol. 53, no. 6, pp. 52–58, jun
2010.

[16] G. James, B. Silverman, and B. Silverman, “Visualizing a classic cpu in
action: the 6502,” in ACM SIGGRAPH 2010 Talks, ser. SIGGRAPH ’10, 2010,
pp. 26:1–26:1.

[17] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-oriented programming without returns,” in Proceed-
ings of the 17th ACM conference on Computer and communications security, ser.
CCS ’10, 2010, pp. 559–572.

[18] M. Bishop and D. Frincke, “Who owns your computer? [digital rights
management],” Security Privacy, IEEE, vol. 4, no. 2, pp. 61 –63, March 2006.

[19] P. Mellstrand and R. Gustavsson, “Experiment based validation of ciip,”
Lecture Notes in Computer Science, vol. 4347, pp. 15–29, 2006.

[20] A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame communication in
browsers,” Commun. ACM, vol. 52, pp. 83–91, June 2009.

[21] B. Schroeder and G. A. Gibson, “Disk failures in the real world: what does
an mttf of 1,000,000 hours mean to you?” in Proceedings of the 5th USENIX
conference on File and Storage Technologies, 2007.

[22] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “An Analysis of Data Corruption in the Stor-
age Stack,” in Proceedings of the 6th USENIX Conference on File and Storage
Technologies (FAST ’08), San Jose, California, February 2008.

[23] J. Shore, “Fail fast,” IEEE Software, vol. 21, pp. 21–25, 2004.

[24] K. Araki, Z. Furukawa, and J. Cheng, “A general framework for debugging,”
IEEE Softw., vol. 8, pp. 14–20, May 1991.

[25] M. N. Gagnon, S. Taylor, and A. K. Ghosh, “Software Protection through
Anti-Debugging,” Security & Privacy Magazine, IEEE, vol. 5, no. 3, pp. 82–84,
2007.

Articles 121

[26] M. Mateas and N. Montfort, “A box, darkly: Obfuscated code, weird lan-
guages, and code aesthetics,” Proceedings of the 2005 Digital Arts and Culture
Conference, pp. 144–153, 2005.

[27] H. Xu and S. J. Chapin, “Address-space layout randomization using code
islands,” J. Comput. Secur., vol. 17, pp. 331–362, August 2009.

[28] P. T. Zellweger, “An interactive high-level debugger for control-flow opti-
mized programs,” SIGPLAN Not., vol. 18, pp. 159–172, March 1983.

[29] S. Bansal and A. Aiken, “Binary translation using peephole superoptimiz-
ers,” in Proceedings of the 8th USENIX conference on Operating systems design
and implementation, ser. OSDI’08, 2008, pp. 177–192.

[30] D. Toupin, “Using tracing to diagnose or monitor systems,” IEEE Softw.,
vol. 28, pp. 87–91, January 2011.

[31] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic instrumen-
tation of production systems,” in Proceedings of the annual conference on
USENIX Annual Technical Conference, ser. ATEC ’04. Berkeley, CA, USA:
USENIX Association, 2004, pp. 2–2.

[32] P. Bungale and C. Luk, “Pinos: a programmable framework for whole-
system dynamic instrumentation,” Proceedings of the 3rd international confer-
ence on Virtual execution environments, pp. 137–147, 2007.

[33] P.-M. Fournier, M. Desnoyers, and M. R. Dagenais, “Combined tracing of
the kernel and applications with LTTng,” in Proceedings of the 2009 Linux
Symposium, jul 2009.

[34] M. Olszewski, K. Mierle, A. Czajkowski, and A. D. Brown, “Jit instrumen-
tation: a novel approach to dynamically instrument operating systems,”
SIGOPS Oper. Syst. Rev., vol. 41, pp. 3–16, March 2007.

[35] L. L. Peterson, A. C. Bavier, M. E. Fiuczynski, and S. Muir, “Experiences
building planetlab,” in OSDI. USENIX Association, 2006, pp. 351–366.

[36] M. Carbone and L. Rizzo, “Dummynet revisited,” SIGCOMM Comput. Com-
mun. Rev., vol. 40, pp. 12–20, April 2010.

Books

[37] E. Hollnagel, D. Woods, and N. Leveson, Resilience Engineering: Concepts
And Precepts. Ashgate Publishing, Apr 2006.

[38] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann, October 2005.

[39] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Watermark-
ing, and Tamperproofing for Software Protection, 1st ed. Addison-Wesley
Professional, 2009.

[40] R. Fernando, Graphics Pipeline Performance. Addison-Wesley Professional,
2004.

[41] J. R. Levine, Linkers and Loaders, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1999.

[42] Y. N. Srikant and P. Shankar, Eds., The Compiler Design Handbook: Optimiza-
tions and Machine Code Generation. CRC Press, 2002.

[43] C. Cifuentes, Reverse Compilation Techniques, 1994, p. 56.

[44] I. Hacking, Representing and Intervening: Introductory Topics in the Philosophy
of Natural Science. Cambridge University Press, nov 1983.

[45] R. C. Metzger, Debugging by Thinking: A Multidisciplinary Approach. Digital
Press, 2003.

[46] L. Simone, If I Only Changed the Software, Why is the Phone on Fire?: Embedded
Debugging Methods Revealed: Technical Mysteries for Engineers. Newnes,
2007.

[47] J. Pearl, Causality: Models, Reasoning and Inference, 2nd ed. New York, NY,
USA: Cambridge University Press, 2009.

[48] J. Woodward, Making Things Happen: A Theory of Causal Explanation. Oxford
University Press, 2003.

[49] J. B. Rosenberg, How debuggers work: algorithms, data structures, and architec-
ture. New York, NY, USA: John Wiley & Sons, Inc., 1996.

123

Standards

[50] “Ieee standard classification for software anomalies,” IEEE Std 1044-2009
(Revision of IEEE Std 1044-1993), pp. C1 – 15, 2010.

[51] ISO, ISO/IEC 7498-1: Information technology - Open Systems Interconnection -
Basic Reference Model: The Basic Model, International Standards Organization
ISO, 1994.

[52] “Java native interface specification.” Available: http://download.oracle.
com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html

[53] J. Postel, “DoD standard Internet Protocol,” RFC 791, Internet Engineering
Task Force, Sept. 1981. Available: http://www.ietf.org/rfc/rfc791.txt

[54] ——, “DoD standard Transmission Control Protocol,” RFC 761, Internet
Engineering Task Force, Jan. 1980. Available: http://www.ietf.org/rfc/
rfc761.txt

[55] “Modbus protocol reference guide.” Available: http://www.modbus.org/
docs/PI MBUS 300.pdf

[56] “About dynamic data exchange.” Available: http://msdn.microsoft.com/
en-us/library/ms648774.aspx

[57] “Local and metropolitan area network standards.” Available: http:
//standards.ieee.org/getieee802/download/802.1Q-2005.pdf

[58] J. Postel, “User Datagram Protocol,” RFC 768, Internet Engineering Task
Force, Aug. 1980. Available: http://www.ietf.org/rfc/rfc768.txt

125

http://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html
http://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/jniTOC.html
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc761.txt
http://www.ietf.org/rfc/rfc761.txt
http://www.modbus.org/docs/PI_MBUS_300.pdf
http://www.modbus.org/docs/PI_MBUS_300.pdf
http://msdn.microsoft.com/en-us/library/ms648774.aspx
http://msdn.microsoft.com/en-us/library/ms648774.aspx
http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf
http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf
http://www.ietf.org/rfc/rfc768.txt

Online Resources

[59] M. Brunner, H. Hofinger, C. Krauß, C. Roblee, P. Schoo, and
S. Todt, “Infiltrating critical infrastructures with next-generation attacks:
W32.stuxnet as a showcase threat,” Fraunhofer SIT, Darmstadt, dec 2010.
Available: http://publica.fraunhofer.de/documents/N-151330.html

[60] “Global energy cyberattacks: Night dragon,” Whitepaper,
feb 2011. Available: www.mcafee.com/us/resources/white-papers/
wp-global-energy-cyberattacks-night-dragon.pdf

[61] “Final report on the August 14, 2003 blackout in the United States
and Canada: Causes and recommendations,” April 2004. Available:
https://reports.energy.gov/

[62] E. Bachaalany, “An attempt to reconstruct the call stack.” Available:
http://www.hexblog.com/?p=104

[63] “Multiple arcade machine emulator.” Available: http://www.mamedev.org

[64] “Wine is not an emulator.” Available: http://www.winehq.org

[65] “Gnu ld linker.” Available: http://www.gnu.org/software/binutils

[66] T. D. Raadt, “Exploit mitigation techniques,” 2005. Available: http:
//www.openbsd.org/papers/ven05-deraadt/index.html

[67] M. Dowd, “Application-specific attacks: Leveraging the action-script
virtual machine,” 2007. Available: http://documents.iss.net/whitepapers/
IBM X-Force WP final.pdf

[68] A. Sotirov and M. Dowd, “Bypassing browser memory protections,”
2008. Available: https://www.blackhat.com/presentations/bh-usa-08/
Sotirov Dowd/bh08-sotirov-dowd.pdf

[69] R. Wojtczuk, “Subverting the xen hypervisor,” 2008. Available: http:
//invisiblethingslab.com/bh08/papers/part1-subverting xen.pdf

[70] “Gdb: The gnu project debugger.” Available: http://www.gnu.org/
software/gdb

[71] “The dwarf debugging standard.” Available: http://www.dwarfstd.org

127

http://publica.fraunhofer.de/documents/N-151330.html
www.mcafee.com/us/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf
www.mcafee.com/us/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf
https://reports.energy.gov/
http://www.hexblog.com/?p=104
http://www.mamedev.org
http://www.winehq.org
http://www.gnu.org/software/binutils
http://www.openbsd.org/papers/ven05-deraadt/index.html
http://www.openbsd.org/papers/ven05-deraadt/index.html
http://documents.iss.net/whitepapers/IBM_X-Force_WP_final.pdf
http://documents.iss.net/whitepapers/IBM_X-Force_WP_final.pdf
https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf
https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf
http://invisiblethingslab.com/bh08/papers/part1-subverting_xen.pdf
http://invisiblethingslab.com/bh08/papers/part1-subverting_xen.pdf
http://www.gnu.org/software/gdb
http://www.gnu.org/software/gdb
http://www.dwarfstd.org

128 Online Resources

[72] “Google android.” Available: http://www.android.com

[73] “Android application licensing, implementing an obfuscator.” Available:
http://developer.android.com/guide/publishing/licensing.html

[74] “Architecture of systemtap: a linux trace/probe tool.” Available:
http://sourceware.org/systemtap/archpaper.pdf

[75] “Developer tools: Apple developer overview.” Available: http:
//developer.apple.com/technologies/tools/

[76] “Embedded elf debugging.” Available: http://www.phrack.com/issues.
html?issue=63&id=9

[77] T. Oetiker and N. Tyni, “Smokeping.” Available: http://oss.oetiker.ch/
smokeping

[78] Integral, ict-platform based distributed control in electricity grids,
fp6-038576. Available: http://www.integral-dc.eu

[79] “Seesgen-ict, supporting energy efficiency in smart generation grids
through ict, cip-ict psp-2-2008-2.” Available: http://seesgen-ict.rse-web.it

[80] “Geni, the global environment for network innovations.” Available:
http://www.geni.net

[81] MATLAB, “version 7.10.0 (r2010a),” 2010. Available: http://www.
mathworks.com/products/matlab

[82] “Opc toolbox.” Available: http://www.mathworks.com/products/opc

[83] N. Instruments, “Ni labview.” Available: http://www.ni.com/labview

[84] P. Solutions, “Pcvue.” Available: http://www.arcinfo.com/

[85] “distributed intelligence in critical infrastructures for sustainable power.”
Available: http://crisp.ecn.nl

[86] “The freebsd project.” Available: http://www.freebsd.org

[87] “Aurora vulnerability,” whitepaper, 2006. Available: http://unix.
nocdesigns.com/aurora white paper.htm

[88] D. Maynor and R. Graham, “Scada security and terrorism: We’re not
crying wolf,” 2006. Available: http://www.blackhat.com/presentations/
bh-federal-06/BH-Fed-06-Maynor-Graham-up.pdf

[89] “Crisp, d3.1 - specification of experiments and test set up.” Available:
http://crisp.ecn.nl/deliverables/D3.1.pdf

[90] “Crisp, d5.3 - final summary report.” Available: http://crisp.ecn.nl/
deliverables/D5.3.pdf

http://www.android.com
http://developer.android.com/guide/publishing/licensing.html
http://sourceware.org/systemtap/archpaper.pdf
http://developer.apple.com/technologies/tools/
http://developer.apple.com/technologies/tools/
http://www.phrack.com/issues.html?issue=63&id=9
http://www.phrack.com/issues.html?issue=63&id=9
http://oss.oetiker.ch/smokeping
http://oss.oetiker.ch/smokeping
http://www.integral-dc.eu
http://seesgen-ict.rse-web.it
http://www.geni.net
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/opc
http://www.ni.com/labview
http://www.arcinfo.com/
http://crisp.ecn.nl
http://www.freebsd.org
http://unix.nocdesigns.com/aurora_white_paper.htm
http://unix.nocdesigns.com/aurora_white_paper.htm
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06- Maynor-Graham-up.pdf
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06- Maynor-Graham-up.pdf
http://crisp.ecn.nl/deliverables/D3.1.pdf
http://crisp.ecn.nl/deliverables/D5.3.pdf
http://crisp.ecn.nl/deliverables/D5.3.pdf

Online Resources 129

[91] “Wireshark.” Available: http://www.wireshark.org

[92] “Tcpdump / libpcap.” Available: http://www.libpcap.org

[93] “Introductory computer science education at carnegie mellon university: A
deans’ perspective.” Available: http://www.cs.cmu.edu/∼bryant/pubdir/
cmu-cs-10-140.pdf

http://www.wireshark.org
http://www.libpcap.org
http://www.cs.cmu.edu/~bryant/pubdir/cmu-cs-10-140.pdf
http://www.cs.cmu.edu/~bryant/pubdir/cmu-cs-10-140.pdf

Blekinge Institute of Technology
Licentiate Dissertation Series No. 2011:05

School of Computing

Exploring Software Resilience

Björn Ståhl

Software has, for better or worse, become a core
component in the structured management and
manipulation of vast quantities of information,
and is therefore central to many crucial services
and infrastructures. However, hidden among the
various benefits that the inclusion of software
may bring is the potential of unwanted and un-
foreseen interactions, ranging from mere annoy-
ances all the way up to full-blown catastrophes.

Overcoming adversities of this nature is a chal-
lenge shared with other engineering ventures,
and there are many developed strategies that
work towards eliminating various kinds of distur-
bances, assuming that it is possible to apply such
strategies correctly. One approach in this regard,
is to accept some anomalous behaviors as mere
facts of life and make sure that the situations ex-
perienced are dealt with in an expeditious man-
ner, while at the same time trying to discover,
implement and improve safe-guards that can les-
sen adverse consequences in the event of future
problems; in short, to embed resilience.

The work described in this thesis explores the
foundations of software resilience, and thus co-
vers the main resilience-enabling mechanisms,
along with supporting tools, techniques and
methods used to embed resilience. These in-
struments are dissected and analyzed from the
perspective of stakeholders that have to operate
on pre-existing, critical, large and heterogeneous
subjects that are to some extent already up and
running at the point of instrumentation. Finally, in
the course of describing this subject, the thesis
describes a demonstrator environment for self-
healing activities in a partially damaged power
grid, its construction details and the initial results
of the study conducted in this environment.

ABSTRACT

ISSN 1650-2140

ISBN 978-91-7295-206-52011:05

E
x

p
lo

r
in

g
 S

o
f

t
w

a
r

e
 Res

il
ie

n
c

e
Björn Ståhl

2011:05

	Introduction
	Context
	Information Systems and Information Processing Systems
	Resilient Systems
	Software and Software-Intensive Systems
	The Origin of Anomalies

	Structure
	Approach
	Contributions

	Use and Misuse of Virtualization
	Setting the Scene
	Approaching Virtualization
	Possibilities
	Caveats
	Moving Forward

	Retooling Software Debugging
	Context
	Toolsuite
	SiS Transition
	Moving Forward
	Conclusions
	Errata

	Experimenting with Infrastructures
	Background
	Experimenting with Power Grids
	Experimenting with ICT
	Experimenting with Power Grids and ICT
	Challenges
	Opportunities
	Conclusions
	Errata

	Conclusions
	Summary
	Related Work
	Validation

	Glossary
	References
	Articles
	 Books
	 Standards
	 Online Resources

